Answer:
It's an Angle of incidence that provides a 90° angle but is also refracted at the same time. it's used to find the water-air boundary (which is 48.6 degrees). in addition, its an angle of incidence value.
Answer:
- quality factor (Q) = 69.99
- inductor = 1.591 x 10⁻⁴ H
- capacitor = 3.248 x 10⁻¹⁰ F
Explanation:
Given;
resonance frequency (F₀) = 700 kHz
resistor, R = 10 Ohm
bandwidth (BW) = 10 kHz
bandwidth (BW) 

make L (inductor) the subject of the formula


make C (capacitor) the subject of the formula

quality factor (Q) 
quality factor (Q) = 69.99
So, If the silica cyliner of the radiant wall heater is rated at 1.5 kw its temperature when operating is 1025.3 K
To estimate the operating temperature of the radiant wall heater, we need to use the equation for power radiated by the radiant wall heater.
<h3>Power radiated by the radiant wall heater</h3>
The power radiated by the radiant wall heater is given by P = εσAT⁴ where
- ε = emissivity = 1 (since we are not given),
- σ = Stefan-Boltzmann constant = 6 × 10⁻⁸ W/m²-K⁴,
- A = surface area of cylindrical wall heater = 2πrh where
- r = radius of wall heater = 6 mm = 6 × 10⁻³ m and
- h = length of heater = 0.6 m, and
- T = temperature of heater
Since P = εσAT⁴
P = εσ(2πrh)T⁴
Making T subject of the formula, we have
<h3>Temperature of heater</h3>
T = ⁴√[P/εσ(2πrh)]
Since P = 1.5 kW = 1.5 × 10³ W
Substituting the values of the variables into the equation, we have
T = ⁴√[P/εσ(2πrh)]
T = ⁴√[1.5 × 10³ W/(1 × 6 × 10⁻⁸ W/m²-K⁴ × 2π × 6 × 10⁻³ m × 0.6 m)]
T = ⁴√[1.5 × 10³ W/(43.2π × 10⁻¹¹ W/K⁴)]
T = ⁴√[1.5 × 10³ W/135.72 × 10⁻¹¹ W/K⁴)]
T = ⁴√[0.01105 × 10¹⁴ K⁴)]
T = ⁴√[1.105 × 10¹² K⁴)]
T = 1.0253 × 10³ K
T = 1025.3 K
So, If the silica cylinder of the radiant wall heater is rated at 1.5 kw its temperature when operating is 1025.3 K
Learn more about temperature of radiant wall heater here:
brainly.com/question/14548124
Answer:
Sound needs a material medium for their propagation like solid, liquid or gas to travel because the molecules of solid, liquid and gases carry sound waves from one point to another. Sound cannot progress through the vacuum because the vacuum has no molecules which can vibrate and carry the sound waves.
Concentrated solar power facilities are solar power—generating facilities that generate electricity at large centralized facilities and transmit that power to homes and businesses through the electric grid .
<h3>What is solar power?</h3>
Solar power refer to electric power or electricity that is generated from sun rays or radiations while using solar panels and other technologies.
Therefore, Concentrated solar power facilities solar power—generating facilities that generate electricity at large centralized facilities and transmit that power to homes and businesses through the electric grid.
Learn more about solar power below
brainly.com/question/17711999
#SPJ12