Answer:
The minimum speed when she leave the ground is 6.10 m/s.
Explanation:
Given that,
Horizontal velocity = 1.4 m/s
Height = 1.8 m
We need to calculate the minimum speed must she leave the ground
Using conservation of energy



Put the value into the formula




Hence, The minimum speed when she leave the ground is 6.10 m/s.
Answer:
- < 25 m/s
- triangle inequality
- between north and east
- 45° < angle < 60°
Explanation:
(a) Just as one-dimensional numbers add on a number line by putting them end-to-end, so two-dimensional numbers add on a coordinate plane the same way.
Here, we choose to let the positive y-axis represent North, and the positive x-axis, East. This is the way a map is conventionally oriented. The velocity of the plane is represented by a vector pointing north (up). Its length represents the magnitude of the velocity. Likewise, the wind is represented by a vector of length 15 pointing east (right). The sum of these is the hypotenuse of the triangle they form.
The magnitude of the sum can be found here using the Pythagorean theorem, but for the purpose of this question, you're not asked to find that.
Instead, you're asked to estimate whether it is more or less than 25 (m/s).
Your knowledge of the triangle inequality will tell you that the hypotenuse (resultant) must be shorter than the sum of the lengths of the sides of the triangle, hence must be less than 10+15 = 25.
__
(b) The triangle inequality says the resultant is less than the sum of the other two sides of the triangle.
__
(c) Since the wind is blowing the plane toward the east, but the plane is traveling toward the north, the resulting direction is somewhere between north and east.
__
(d) "Somewhere between north and east" can be expressed as the inequality ...
0° < angle < 90°
Answer:
The horizontal distance of Sosa is 276.526 ft or 84.28 meter.
Explanation:
As shown in the figure, let point O is the starting point of Sosa. She travels 361 ft at an angle 50 degree with the horizontal.
sin 50 = 
0.7660 = h / 361
h = 276.526 ft
h = 84.28 meter
The horizontal distance of Sosa is 276.526 ft or 84.28 meter.
The force of gravity on a certain object is calculated through the equation,
F = Gm1m2 / r²
where F is the force, G is a constant, m1 and m2 are masses of the object and Earth, respectively and r is the distance. Substituting the known values for this item,
F = (6.67 x 10⁻¹¹ N.m²/kg²)(1 kg)(5.98 x 10²⁴ kg)/ (6.4 x 10⁶ m)²
F = 9.37 N
Answer: 9.37 N
Glass and water are thicker and heavier than air. They are said to be 'denser' than air. What happens is that light slows down when it passes from the less dense air into the denser glass or water. This slowing down of the ray of light also causes the ray of light to change direction.