The reciprocal of the total resistance is equal to the sum of the reciprocals of the component resistances:
1/(120.7 Ω) = 1/<em>R₁</em> + 1/(221.0 Ω)
1/<em>R₁</em> = 1/(120.7 Ω) - 1/(221.0 Ω)
<em>R₁</em> = 1 / (1/(120.7 Ω) - 1/(221.0 Ω)) ≈ 265.9 Ω
Explanation:
When you run, your body has a kinetic energy and when you fall while running, the friction between the carpet and your foot, transforms the kinetic energy into thermal energy or heat energy. This can even cause, real burn if the skin were too hot.
Answer:

Explanation:
The correct equation follows the law of conservation of energy where kinetic energy is all transformed to potential energy, since we know that kinetic energy is expressed as
while potential energy is mgh where m is the mass of the object, v is the velocity or speed of the object, g is acceleration due to gravity and h is the vertical height. Therefore, relating the two equations we should have 
Answer:
R1 = 5.13 Ω
Explanation:
From Ohm's law,
V = IR............... Equation 1
Where V = Voltage, I = current, R = resistance.
From the question,
I = 2 A, R = R1
Substitute into equation 1
V = 2R1................ Equation 2
When a resistance of 2.2Ω is added in series with R1,
assuming the voltage source remain constant
R = 2.2+R1, and I = 1.4 A
V = 1.4(2.2+R1)................. Equation 3
Substitute the value of V into equation 3
2R1 = 1.4(2.2+R1)
2R1 = 3.08+1.4R1
2R1-1.4R1 = 3.08
0.6R1 = 3.08
R1 = 3.08/0.6
R1 = 5.13 Ω
To find the total number of miles traveled by a person, we add the distance that he has traveled: 3.0 + 5.00 + 4.000.
Now, to find the accurate number of significant figures when adding measurements, the basic rule for addition is to use the least number of decimal places when reporting the result.
Now, since 3.0 has the least number of decimal places, we report the sum with 1 decimal place and have 12.0 miles as the total distance traveled by the person to reach his destination.
Answer: 12.0 miles