The current will decrease as the resistance has now increased, meaning less current will be 'let through' the resistor. (assuming it's in series, there's no image)
14 ms is required to reach the potential of 1500 V.
<u>Explanation:</u>
The current is measured as the amount of charge traveling per unit time. So the charge of electrons required for each current is determined as the product of current with time.

As two different current is passing at two different times, the net charge will be the different in current. So,

The electric voltage on the surface of cylinder can be obtained as the ratio of charge to the radius of the cylinder.

Here
, q is the charge and R is the radius. As
and R =17 cm = 0.17 m, then the voltage will be

The time is required to find to reach the voltage of 1500 V, so


So, 14 ms is required to reach the potential of 1500 V.
At STP, 1 mole of an ideal gas occupies a volume of about 22.4 L. So if <em>n</em> is the number of moles of this gas, then
<em>n</em> / (19.2 L) = (1 mole) / (22.4 L) ==> <em>n</em> = (19.2 L•mole) / (22.4 L) ≈ 0.857 mol
If the sample has a mass of 12.0 g, then its molecular weight is
(12.0 g) / <em>n</em> ≈ 14.0 g/mol
Answer:
present
Explanation:
read doesn't change but write is in present tense
Answer:
1.503 J
Explanation:
Work done in stretching a spring = 1/2ke²
W = 1/2ke²........................... Equation 1
Where W = work done, k = spring constant, e = extension.
Given: k = 26 N/m, e = (0.22+0.12), = 0.34 m.
Substitute into equation 1
W = 1/2(26)(0.34²)
W = 13(0.1156)
W = 1.503 J.
Hence the work done to stretch it an additional 0.12 m = 1.503 J