Answer:
189.71 secs
Explanation:
We know that decomposition is a first order reaction;
So;
ln[A] = ln[A]o - kt
But;
[A]o = 1.00 M
[A] = 0.250 M
t =135 s
Hence;
ln[A] - ln[A]o = kt
k = ln[A] - ln[A]o/t
k = ln(1) - ln(0.250)/135
k =0 - (-1.386)/135
k = 1.386/135
k= 0.01
So time taken now will be;
ln[A] - ln[A]o = kt
t = ln[A] - ln[A]o/k
t = ln (3) - ln(0.450)/0.01
t = 1.0986 - (-0.7985)/0.01
t = 1.0986 + 0.7985/0.01
t = 189.71 secs
We can calculate how long the decay by using the half-life equation. It is expressed as:
A = Ao e^-kt
<span>where A is the amount left at t years, Ao is the initial concentration, and k is a constant.
</span><span>From the half-life data, we can calculate for k.
</span>
1/2(Ao) = Ao e^-k(30)
<span>k = 0.023
</span>
0.04Ao = Ao e^0.023(t)
<span>t = 140 sec</span>
Since gold and silver are the least reactive metals, they do not react with water. The surface of metallic lead is covered by a thin layer of lead oxide,. As a result, it does not react with water in normal circumstances.
Explanation:
<h3>Hope it helps you!! </h3>
The answer is a) by increasing the temperature of the reactants.
Brenda is correct!
Hope this helps!:)