The vacuoles because the plant's central vacuole is bigger.
Answer:
108.7 V
Explanation:
Two forces are acting on the particle:
- The external force, whose work is 
- The force of the electric field, whose work is equal to the change in electric potential energy of the charge: 
where
q is the charge
is the potential difference
The variation of kinetic energy of the charge is equal to the sum of the work done by the two forces:

and since the charge starts from rest,
, so the formula becomes

In this problem, we have
is the work done by the external force
is the charge
is the final kinetic energy
Solving the formula for
, we find

Answer:

Explanation:
We must use conservation of linear momentum before and after the collision, 
Before the collision we have:

where these are the masses are initial velocities of both players.
After the collision we have:

since they clong together, acting as one body.
This means we have:

Or:

Which for our values is:

Answer:

Explanation:
According to “Newton's second law”
“Force” is “mass” times “acceleration”, or F = m× a. This means an object with a larger mass needs a stronger force to be moved along at the same acceleration as an object with a small mass
Force = mass × acceleration

Given that,
Mass = 5.32 kg


F = 12.7N
Normal force = mg + F sinx,
“m” being the object's "mass",
“g” being the "acceleration of gravity",
“x” being the "angle of the cart"

To find normal force substitute the values in the formula,
Normal force = 5.32 × 9.8 + 12.7 × sin(-28.7)
Normal force = 52.136 + 12.7 × 0.480
Normal force = 52.136 + 6.096
Normal force = 58.232 N
<u>Acceleration of the cart</u>:



