<span>1) at rest his
weight is 840 N
=> 840N = mass * g => mass = 840 N / g = 840 N / 9.8 m/s^2 = 85.7 kg
2) as the elevator rises, his weight increases to 1050 N,
The reading of the scale is the norma force of it over the body of the person.
And the equation for the force is: Net force = mass * acceleration = normal force - weight at rest
=> mass * acceleration = 1050 N - 840 N = 210 N
acceleration = 210 N / mass = 210 N / 85.7 kg = 2.45 m/s^2 (upward)
3) when the elevator slows to a stop at the 10th
floor, his weight drops to 588 N
=> mass * acceleration = 588 N - 840 N = - 252 N
=> acceleration = - 252 N / 85.71 kg = - 2.94 m / s^2 (downward)
Answer:
Acceleration at the beginning of the trip 2.45 m/s^2 upward
Acceleration at the end of the trip 2.94 m/s^2 downward
</span>
The period of a pendulum is given by

since Karachi is near sea level, g is larger than it is on Mt. Everest. That means the pendulum will have a larger period on Mt. Everest than it would in Karachi.
Answer:
the answer is A
Explanation: The vertical temperature line indicates no change in temperature at those altitudes.
The electric output of the plant is 48.19 MW
First we need to calculate the water power, it is given by the formula
WP=ρQgh
Here, ρ=1000 kg/m3 is density of water,Q is the flow rate, g is the gravity, and h is the water head
Therefore, WP=1000*65*9.81*90=57388500 W=57.38 MW
Now the overall efficiency of the hydroelectric power plant is given as
η=
Plugging the values in the above equation
0.84=EP/57.38
EP=48.19 MW
Therefore, the electric output of the plant is 48.19 MW.
Answer:
i wanna say tranverse if not surface
Explanation: