Answer:
absorption and insolation.
Explanation:
The magnitude of the acceleration of the ball while coming to rest is 477.43 m/s²
The direction of the acceleration of the ball is downwards
The given parameters
initial velocity of the ball, u = 0
height above the ground, h = 2.2 m
time of motion of the ball, t = 96 ms = 0.096 s
The magnitude of the acceleration of the ball while coming to rest is calculated as;
let the downwards direction of the acceleration be positive

The direction of the acceleration of the ball is downwards
Learn more here: brainly.com/question/15407740
The answers To your question is c
To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.
The angular velocity can be described as

Where,
Final Angular Velocity
Initial Angular velocity
Angular acceleration
t = time
The relation between the tangential acceleration is given as,

where,
r = radius.
PART A ) Using our values and replacing at the previous equation we have that



Replacing the previous equation with our values we have,




The tangential velocity then would be,



Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation

Replacing with our values and re-arrange to find 



That is equal in revolution to

The linear displacement of the system is,



<span>In order best to find out whether the obtained experimental results are worth mor etime and resources the group of scientists should present their results (could be done also in poster session) to other scientists in order to hear their opinion and get a feedback. The shoudl also ask another researchers to redo the experiments and to compare the results. </span>