Answer:
η = 58.8%
Explanation:
Work is defined as the force applied by the distance traveled by the body.

where:
W = work [J] (units of joules)
F = force = 294 [N]
d = distance = 5 [m]
![W = 294*5\\W = 1470 [J]\\](https://tex.z-dn.net/?f=W%20%3D%20294%2A5%5C%5CW%20%3D%201470%20%5BJ%5D%5C%5C)
Efficiency is defined as the energy required to perform an activity in relation to the energy actually added to perform some activity. This can be better understood by means of the following equation.

Answer: An 8 kg book at a height of 3 m has the most gravitational potential energy.
Explanation:
Gravitational potential energy is the product of mass of object, height of object and gravitational field.
So, formula to calculate gravitational potential energy is as follows.
U = mgh
where,
m = mass of object
g = gravitational field = 
h = height of object
(A) m = 5 kg and h = 2m
Therefore, its gravitational potential energy is calculated as follows.

(B) m = 8 kg and h = 2 m
Therefore, its gravitational potential energy is calculated as follows.

(C) m = 8 kg and h = 3 m
Therefore, its gravitational potential energy is calculated as follows.

(D) m = 5 kg and h = 3 m
Therefore, its gravitational potential energy is calculated as follows.

Thus, we can conclude that an 8 kg book at a height of 3 m has the most gravitational potential energy.
Answer:
a. Angular velocity = 0.267rad/s.
b. Centripetal acceleration = 56.25m/s.
Explanation:
<u>Given the following data;</u>
Mass, m = 8kg
Radius, r = 4m
Constant speed, V = 15m/s
a. To find the angular velocity
Angular velocity = radius/speed
Substituting into the equation, we have;
Angular velocity = 4/15
Angular velocity = 0.267rad/s
b. To find the acceleration;
Centripetal acceleration = V²/r
Substituting into the equation, we have;
Centripetal acceleration = 15²/4
Centripetal acceleration = 225/4
Centripetal acceleration = 56.25m/s.
Answer:
0.015
Explanation:
Total volume of water coming out = 1.33
Also volume = Cross sectional area*Length covered
Length covered = Velocity *time
=24.5*3.55
=86.97 meter
Let the cross sectional area be A.
1.33 = 86.97*A
A =0.015
Because the people in the car are attached to the vehicle, the people inside the vehicle are going the same speed as the vehicle.
Hope this helps! :)