1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sdas [7]
2 years ago
12

Does increase in metabolism accelerates weight loss?.

Physics
1 answer:
erma4kov [3.2K]2 years ago
8 0

Answer: yes

Explanation: Having a higher metabolism can help you lose weight and keep it off, while also giving you more energy.

You might be interested in
Determine the moment of inertia Ixx of the mallet about the x-axis. The density of the wooden handle is 860 kg/m3 and that of th
Yuki888 [10]

Complete Question

Diagram for this  shown on the first uploaded image

Answer:

The moment of inertia Ixx of the mallet about the x-axis is I{xx}= 0.119 kg \cdot m^2

Explanation:

From the question we are told that

        The density `of wooden handle is  \rho_w = 860 kg/m^3

        The density `of soft-metal head  is \rho_s =8000kg/m^3

Generally the mass of the wooden can be mathematically obtained with this formula

          m_w = \rho_w A_w l_w

Where A_w is mass of wooden handle which is  mathematically obtain with the formula

             A_w = \frac{\pi}{4} d^2_w

Where d_w is the diameter  of the wooden handle which from the diagram is

       27mm = \frac{27}{1000} = 0.027m

So  A_w = \frac{\pi}{4} * 0.027^2

      l_w is the length of the the wooden handle which is given in the diagram as   l_w = 315mm = \frac{315}{1000} = 0.315m

Substituting these value into the formula for mass

      m_w = 860 * (\frac{\pi}{4} * 0.027^2 ) *0.315

            = 0.155kg

Generally the mass of the soft-metal head can be mathematically obtained with this formula

           m_s = \rho_s A_s l_s

Where A_s is mass of soft-metal head which is  mathematically obtain with the formula

            A_s = \frac{\pi}{4} d^2_s

Where d_s is the diameter  of the soft-metal head which from the diagram is            

       36mm = \frac{36}{1000} = 0.036m

So  A_s = \frac{\pi}{4} * 0.036^2

 l_s is the length of the the soft-metal head which is given in the diagram

     as   l_s = 90mm = \frac{90}{1000} = 0.090m

Substituting these value into the formula for mass  

                  m_s = 8000 * (\frac{\pi}{4} * 0.036^2 ) *0.090

                       =0.733kg

Generally the mass moment of inertia about x-axis for the wooden handle is

                  (I_{xx})_w  =    [\frac{1}{3}m_w + l_w^2 ]  

Substituting values

                   (I_{xx})_w  =    [\frac{1}{3}*0.155 + 0.315^2 ]

                              =5.12*10^{-3}kg \cdot m^2  

Generally the mass moment of inertia about x-axis for the soft-metal head is

    (I_{xx})_s = [\frac{1}{12}m_s l_s ^2 + b^2]

Where b is the distance from the centroid to the axis of the head which is mathematically given as

                   b=l_w +\frac{d_s}{2}

Substituting values

                 b = 0.315 + \frac{0.036}{2}

                    = 0.336m

Now substituting values into the formula for mass moment of inertia about x-axis for soft-metal head

                            (I_{xx})_s = [\frac{1}{12} *0.733*  0.090^2 + 0.336^2]

                                      =0.113 kg \cdot m^2

Generally the mass moment of inertia about x-axis is mathematically represented as

         I_{xx} = (I_{xx})_w + (I_{xx})_s

                = [\frac{1}{3}m_w + l_w^2 ] + [\frac{1}{12}m_s l_s ^2 + b^2]

Substituting values

        I_{xx} = 5.12*10^{-3} +0.113

               I{xx}= 0.119 kg \cdot m^2

             

             

8 0
3 years ago
Potassium and chlorine are most likely to form what type of bond? ionic covalent metallic polar
fiasKO [112]

Answer:

The correct answer is the IONIC bond.

Explanation:

4 0
4 years ago
Read 2 more answers
Water drops fall from the edge of a roof at a steady rate. a fifth drop starts to fall just as the first drop hits the ground. a
Alchen [17]

The height of the roof is <u>3.57m</u>

Let the drops fall at a rate of 1 drop per t seconds. The first drop takes 5t seconds to reach the ground. The second drop takes 4t seconds to reach the bottom of the 1.00 m window, while the 3rd drop takes 3t s to reach the top of the window.

Calculate the distances traveled by the second and the third drops s₂ and s₃, which start from rest from the roof of the building.

s_2=\frac{1}{2} g(4t)^2=8gt^2\\  s_3=\frac{1}{2} g(3t)^2=(4.5)gt^2

The length of the window s is given by,

s=s_2-s_3\\ (1.00 m)=8gt^2-4.5gt^2=3.5gt^2\\ t^2=\frac{1.00 m}{(3.5)(9.8m/s^2)} =0.02915s^2

The first drop is at the bottom and it takes 5t seconds to reach down.

The height of the roof h is the distance traveled by the first drop and is given by,

h=\frac{1}{2} g(5t)^2=\frac{25t^2}{2g} =\frac{25(0.02915s^2)}{2(9.8m/s^2)} =3.57 m

the height of the roof is 3.57 m



8 0
4 years ago
Read 2 more answers
A long-distance runner is running at a constant speed of 5 m/s.
vivado [14]

Answer:

3.33 minutes (3 minutes and 20 seconds)

Explanation:

Speed of the runner = s = 5 m/s

We need to calculate how will it take for runner to complete 1 km. We have the speed, the distance and we need to find the time. Before performing any calculations, we must convert the values to same units.

Speed is in m/s and distance is in kilometers. So we have to either convert speed to km/s or distance into meters. In this case, converting distance into meters would be a convenient option.

1 kilo meters = 1000 meters

The distance, speed and time are related by the equation:

Distance = Speed x Time

So,

Time = Distance/Speed

Using the values, we get:

t = 1000/5

t = 200 seconds

This means, the runner can complete 1 kilometers in 200 seconds. Since, there are 60 seconds in a minute, we can convert this time to minutes, by dividing it by 60. i.e.

200 \text{ sec} = \frac{200}{60} \text{ min} = 3.33 \text{ min}

Thus, it will take the runner 3.33 minutes (3 minutes and 20 seconds) to travel 1 km.

3 0
3 years ago
If a planet has the same mass as the earth, but has twice the radius, how does the surface gravity, g, compare to g on the surfa
shepuryov [24]

Answer:

The surface gravity g of the planet is 1/4 of the surface gravity on earth.

Explanation:

Surface gravity is given by the following formula:

g=G\frac{m}{r^{2}}

So the gravity of both the earth and the planet is written in terms of their own radius, so we get:

g_{E}=G\frac{m}{r_{E}^{2}}

g_{P}=G\frac{m}{r_{P}^{2}}

The problem tells us the radius of the planet is twice that of the radius on earth, so:

r_{P}=2r_{E}

If we substituted that into the gravity of the planet equation we would end up with the following formula:

g_{P}=G\frac{m}{(2r_{E})^{2}}

Which yields:

g_{P}=G\frac{m}{4r_{E}^{2}}

So we can now compare the two gravities:

\frac{g_{P}}{g_{E}}=\frac{G\frac{m}{4r_{E}^{2}}}{G\frac{m}{r_{E}^{2}}}

When simplifying the ratio we end up with:

\frac{g_{P}}{g_{E}}=\frac{1}{4}

So the gravity acceleration on the surface of the planet is 1/4 of that on the surface of Earth.

3 0
3 years ago
Other questions:
  • When you throw a ball upward, its kinetic energy and its potential energy . When the ball reaches maximum height, its kinetic en
    9·2 answers
  • In the chemical reaction below, sodium (Na) and chlorine (Cl) combine to form sodium chloride (NaCl). 2Na + Cl2 → 2NaCl If the c
    12·2 answers
  • A weightlifter lifts a set of weights a distance of 2.00 m. If the weights have a mass of 60.0 kg and are pushed vertically upwa
    6·2 answers
  • Coin-shaped compartment that contains light-absorbing molecules
    6·1 answer
  • A solenoid with 1000 turns has a cross-sectional area of 7.0 cm2 and length of 25 cm. How much energy is stored in the magnetic
    14·1 answer
  • Which of the following are vector quantities? Select all that apply.
    6·1 answer
  • Describe how you would draw a diagram that shows the electric field between two particles that attract each other.
    13·2 answers
  • You and your buddy are scuba diving and notice that air bubbles triple in volume as they rise to the surface from where you are
    8·1 answer
  • If a spring stores 20 j of energy when it's compressed by 0.4 m what is the spring constant of the spring
    13·1 answer
  • What causes us to perceive objects in three dimensions?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!