Answer:
The radius of the sphere is 3.6 m.
Explanation:
Given that,
Potential of first sphere = 450 V
Radial distance = 7.2 m
If the potential of sphere =150 V
We need to calculate the radius
Using formula for potential
For 450 V

....(I)
For 150 V
....(II)
Divided equation (I) by equation (II)





Hence, The radius of the sphere is 3.6 m.
Answer:
A thin, taut string tied at both ends and oscillating in its third harmonic has its shape described by the equation y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t]y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t], where the origin is at the left end of the string, the x-axis is along the string, and the y-axis is perpendicular to the string. (a) Draw a sketch that shows the standing-wave pattern. (b) Find the amplitude of the two traveling waves that make up this standing wave. (c) What is the length of the string? (d) Find the wavelength, frequency, period, and speed of the traveling waves. (e) Find the maximum transverse speed of a point on the string. (f) What would be the equation y(x, t) for this string if it were vibrating in its eighth harmonic?
Is there a multiple choice?
The total momentum of the system is preserved through the collision.
Note that momentum is
P = m*v
where m = mass
v = velocity.
Initial momentum:
P1 = (30000 kg)*(2 m/s) = 60000 (kg-m)/s for the moving car
P2 = 0 for the starionary car.
Final momentum:
P3 = (30000 + 30000)*v = 60000v (kg-m)/s
Because momentum is preserved,
P3 = P1 + P2
60000v = 60000
v = 1 m/s
The final velocity is 1 m/s.
Answer: 1.0 m/s