Th equations to be used here are the following:
a = (v - v₀)/t
x = v₀t + 0.5at²
The speed of the fugitive is the sum of his own speed plus the speed of the train. Thus,
v₀ = 0 + 5.5 m/s = 5.5 m/s
v = 8 m/s + 5.5 m/s = 13.5 m/s
a.) We use the first equation to determine time
2.5 m/s² = (13.5 m/s - 5.5 m/s)t
Solving for t,
t = 3.2 seconds
b.) We use the answer in a) and the 2nd equation:
x = (5.5 m/s)(3.2 s) + 0.5(2.5 m/s²)(3.2 s)²
x = 30.4 meters
Well you could see it's physical properties have the same descriptions corresponding to a liquid. (Sorry if this doesn't help you..)
Explanation:
The net force of each square is the combination of the forces in each direction. The direction is the... direction the square would go in due to the net force. The magnitude of the net force is how large it is. So if you had a force pushing 2N to the left and 1N to the right, then the net force would be 1N to the left; because the two oppose eachother. If they were going in the same direction, then they'd add to each other. And perpendicular net forces (like one pushing up and another pushing left) can create net forces in diagonal directions.
I'm not going to do all of these for you because they're basically all the same thing and it's good practice for you anyway. But I'll do the first three just so you can get the idea:
1. The net force's magnitude is 4N and it's direction is to the right.
2. The net force's magnitude is 4N and it's direction is to the left.
3. The net force's magnitude is 0N and it has no direction because they are equal forces acting in opposite directions.
A string wound around a cylinder of 10 cm<span> radius has a 150 gram mass attached. When released, the mass accelerates at 50 </span>cm/s2<span>.</span>