D) Less than 20.
Explanation:
Equivalent resistance in a parallel combination is less than their individual value.
Answer: 11%
Explanation:
Given that
X = ab^2/C. Calculate percentage error in X, when percentage error in a,b,c are 4,2 and 3 respectively.
Percentage error of b = 2%
Percentage error of b^2 = 2 × 2 = 4
When you are calculating for percentage error that involves multiplication and division, you will always add up the percentage error values.
Percentage error of X will be;
Percentage error of a + percentage error of b^2 + percentage error of c
Substitute for all these values
4 + 4 + 3 = 11%
Therefore, percentage error of X is 11%
Answer:
500m/s
Explanation:
From the question we are given the following;
mass per unit length = 4.80 x10^-3 kg/m
Tension T = 1200N
Speed of the wave is expressed as;
v = √T/m
v = √1200/0.0048
v = √250,000
v = 500m/s
Hence the speed at which the wave travels on this string is 500m/s
Answer:
Explanation:
This question appears incomplete because of the absence of the data been talked about in the question. However, there is a general ruling here and it can be applied to the data at hand.
If an increase in the distance of charges (let's denote with "d") causes the electric field strength (let's denote with"E") to increase, then the mathematical representation can be illustrated as d ∝ E (meaning distance of charge is directly proportional to electric field strength).
But if an increase in the distance of the charges causes the electric field strength to decrease, then the mathematical representation can be illustrated as d ∝ 1/E (meaning distance of charge is inversely proportional to electric field strength).
A scatterplot can also be used to determine this. If there is a positive correlation (correlation value is greater than zero but less than or equal to 1) on the graph, then it is illustrated as "d ∝ E" BUT if there is a negative correlation (correlation value is less than zero but greater than or equal to -1), then it can be illustrated as "d ∝ 1/E".
Answer:
1.997s = 2.0s
Explanation:
From equation of motion,
S = ut + 1/2 gt²
u = 0 m/s
t = ?
g = 9.8 m/s²
S = 1955cm = 19.55m
19.55 = 0 + 1/2 * 9.8 * t²
19.55 * 2 = 9.8t²
t² = 19.55 * 2 / 9.8
t² = 3.987
t = (3.987)^½ (take the square root of both sides)
t = 1.997s = 2.0s