Answer:
Yes, fracture will occur
Explanation:
Half length of internal crack will be 4mm/2=2mm=0.002m
To find the dimensionless parameter, we use critical stress crack propagation equation
and making Y the subject

Where Y is the dimensionless parameter, a is half length of crack, K is plane strain fracture toughness,
is critical stress required for initiating crack propagation. Substituting the figures given in question we obtain

When the maximum internal crack length is 6mm, half the length of internal crack is 6mm/2=3mm=0.003m
and making K the subject
and substituting 260 MPa for
while a is taken as 0.003m and Y is already known

Therefore, fracture toughness at critical stress when maximum internal crack is 6mm is 42.455 Mpa and since it’s greater than 40 Mpa, fracture occurs to the material
Answer:
18 kJ
Explanation:
Given:
Initial volume of air = 0.05 m³
Initial pressure = 60 kPa
Final volume = 0.2 m³
Final pressure = 180 kPa
Now,
the Work done by air will be calculated as:
Work Done = Average pressure × Change in volume
thus,
Average pressure =
= 120 kPa
and,
Change in volume = Final volume - Initial Volume = 0.2 - 0.05 = 0.15 m³
Therefore,
the work done = 120 × 0.15 = 18 kJ
Answer:
The result in terms of the local Reynolds number ⇒ Re = [μ_∞ · x] / v
Explanation:
See below my full workings so you can compare the results with those obtained from the exact solution.
Answer:
The diameter is 50mm
Explanation:
The answer is in two stages. At first the torque (or twisting moment) acting on the shaft and needed to transmit the power needs to be calculated. Then the diameter of the shaft can be obtained using another equation that involves the torque obtained above.
T=(P×60)/(2×pi×N)
T is the Torque
P is the the power to be transmitted by the shaft; 40kW or 40×10³W
pi=3.142
N is the speed of the shaft; 250rpm
T=(40×10³×60)/(2×3.142×250)
T=1527.689Nm
Diameter of a shaft can be obtained from the formula
T=(pi × SS ×d³)/16
Where
SS is the allowable shear stress; 70MPa or 70×10⁶Pa
d is the diameter of the shaft
Making d the subject of the formula
d= cubroot[(T×16)/(pi×SS)]
d=cubroot[(1527.689×16)/(3.142×70×10⁶)]
d=0.04808m or 48.1mm approx 50mm