Two resistor of 2Ω in series parallel to resistor 5Ω in series to a 2Ω resistor. This configuration gives to us an equivalent resistor of 2.55Ω.
To solve this problem we have to use the rules of conection of resistor in series and parallel.
A resistor R1 in serie with other resistor R2 gives us an equivalent resistor Req= R1 + R2.
A resistor R1 in parallel with other resistor R2 gives us an equivalent resistor Req = R1.R2/R1+R2.
The circuit that show an arregement of resistor which we obtain a equivalent resistor of 2.5Ω from three resistor of 2Ω and 5Ω respectively is attached in the image:
Answer:
O pH is a measure of the concentration of H+ ions in a solution of an acid or base. The pH plots
the concentration of solutions in a range from 0-14.
Explanation:
pH is a measure of how acidic/basic water is. The range goes from 0 to 14, with 7 being neutral.
Answer:
1000 N
Explanation:
The magnitude of the electrostatic force between two charged object is given by

where
k is the Coulomb constant
q1, q2 is the magnitude of the two charges
r is the distance between the two objects
Moreover, the force is:
- Attractive if the two forces have opposite sign
- Repulsive if the two forces have same sign
In this problem:
are the two charges
r = 3000 m is their separation
Therefore, the electric force between the charges is:

Answer:
The source is at a distance of 4.56 m from the first point.
Solution:
As per the question:
Separation distance between the points, d = 11.0 m
Sound level at the first point, L = 66.40 dB
Sound level at the second point, L'= 55.74 dB
Now,

where

I = Intensity of sound
Now,

Similarly,

Now,




Solving the above quadratic eqn, we get:
R = 4.56 m
Answer:
b) 6
Explanation:
Given
v(t)=3t²+6t
X(0) = 2
X(1) = ?
Knowing that
v(t)=3t²+6t = dX/dt
⇒ ∫dX = ∫(3t²+6t)dt
⇒ X - X₀ = t³ + 3t²
⇒ X(t) = X₀ + t³ + 3t²
If X(0) = 2
⇒ X(0) = X₀ + (0)³ + 3(0)² = 2
⇒ X₀ = 2
then we have
X(t) = t³ + 3t² + 2
when
t = 1
X(1) = (1)³ + 3(1)² + 2
X(1) = 6