Answer:
x = 0.40 m
Explanation:
- When the displacement is maximum, the particle is momentarily at rest, which means that at this point (assuming no friction present) all the mechanical energy is elastic potential, which can be written as follows:

- Since in absence of friction, total mechanical energy must keep constant, this means that at any time, the sum of the kinetic and potential energy, must be equal to (1), as follows:

- If KEf = U/2f, replacing in (2), we get:

- At any point, the elastic potential energy is given by the following expression:

where k= spring constant (N/m) and x is the displacement from the
equilibrium position.
- Replacing (4) in (3), simplifying and rearranging, we get:

- Finally, solving for x, we get:

Use this formula to find your answer...
Determine the frequency of a clock waveform whose period is 2us or (micro) and 0.75ms
frequency (f)=1/( Time period).
Frequency of 2 us clock =1/2*10^-6 =10^6/2 =500000Hz =500 kHz.
Frequency of 0..75ms clock =1/0.75*10^-3 =10^3/0.75 =1333.33Hz =1.33kHz.
The answer is C. I hope this helps you.
Answer:He lifts 2 meters
Explanation:We are trying to find the distance. The formula for distance is W/Force. 50 is our amount of work. 25N is how much force was used. Divide the work bye the force. 50/25=2M