These problems are a bit interesting. :)
First let's write the molecular formula for ammonium carbonate.
NH4CO3 (Note! The 4 and 3 are subscripts, and not coefficients)
17.6 gNH4CO3
Now to convert to mol of one of our substances we take the percent composition of that particular part of the molecule and multiply it by our starting mass. This is what it looks like using dimensional analyse.
17.6 gNH4CO3 * (Molar Mass of NH4 / Molar Mass of NH4CO3)
Grab a periodic table (or look one up) and find the molar masses for these molecules! Well. In this case I'll do it for you. (Note: I round the molar masses off to two decimal places)
NH4 = 14.01 + 4*1.01 = 18.05 g/mol
NH4CO3 = 14.01 + 4*1.01 + 12.01 + 3*16.00 = 78.06 g/mol
17.6 gNH4CO3 * (18.05 molNH4 / 78.06 molNH4CO3)
= 4.07 gNH4
Now just take the molar mass we found to convert that amount into moles!
4.07 gNH4 * (1 molNH4 / 18.05 gNH4) = 0.225 molNH4
Answer:
bromine (Br)
Explanation: Iron enters into a reaction with substances of different classes, and interacts with oxygen, carbon, phosphorus, halogens (bromine, iodine, fluorine and chlorine), and also nitrogen. These are not all the reactions of iron – this metal reacts with many elements.
<span>To solve this problem, You need to look up a picture/diagram of the electromagnetic spectrum. This will have the wave regions listed as well</span> as frequencies and wavelength.
Wavelength is distance/length of one wave, which can be calculated using frequency (hz = s^-1) and the speed of light.
2.998 x 10^8 m/s ÷ 3 x 10^19 s^-1 = 9.99 x 10^-12 m
The Frequency given falls in between X-rays and Gamma rays. The wavelength however; is in the Gama ray region.
Answer:
Explanation:
The molecular mass of C2H6 is approximately 30 or [(2 x 12) + (6 x 1)]. Therefore the molecule is about 2.5 times as heavy as the 12C atom or about the same mass as the NO atom with a molecular mass of 30 or (14+16).