The van 't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as calculated from its mass. For most non-electrolytes dissolved in water, the van 't Hoff factor is essentially 1.
<h3>What is the value of Van t Hoff factor?</h3>
For most non-electrolytes dissolved in water, the Van 't Hoff factor is essentially $ 1 $ . For most ionic compounds dissolved in water, the Van 't Hoff factor is equal to the number of discrete ions in a formula unit of the substance.
<h3>Which has highest Van t Hoff factor?</h3>
The Van't Hoff factor will be highest for
A. Sodium chloride.
B. Magnesium chloride.
C. Sodium phosphate.
D. Urea.
Learn more about van't off factor here:
<h3>
brainly.com/question/22047232</h3><h3 /><h3>#SPJ4</h3>
Answer:
to separate the compounds by gravity
Explanation:
Centrifuging is the process of separating compound in a liquid mixture by means of gravity and settling. This makes use of the density principle. In the process, the sample is added to the centrifuge. This is then rotated at a certain speed, say 50 rpm. The circular motion creates a force of gravity that pulls the compounds downwards. This then separate the compounds. The heaviest and most dense go down first, then the lighter particles on the top.
Answer:
0.2788 M
1.674 %(m/V)
Explanation:
Step 1: Write the balanced equation
NaOH + CH₃COOH → CH₃COONa + H₂O
Step 2: Calculate the reacting moles of NaOH

Step 3: Calculate the reacting moles of CH₃COOH
The molar ratio of NaOH to CH₃COOH is 1:1.

Step 4: Calculate the molarity of the acetic acid solution

Step 5: Calculate the mass of acetic acid
The molar mass of acetic acid is 60.05 g/mol.

Step 6: Calculate the percentage of acetic acid in the solution

First find the number of moles of KSCN is in 4.40g of KSCN
1. Number of moles = mass given (4.40g) / molecular weight(MW) (KSCN)
- to calculate MW, look for each element in the periodic table and add their atomic weight
2. Convert 200mL to liters
3. Concentration = number of moles/ volume in liters from (#2)