1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lyudmila [28]
3 years ago
13

One degree Celsius indicates the same temperature change as?

Physics
1 answer:
VARVARA [1.3K]3 years ago
6 0
If you've ever seen the formula from Celsius to Fahrenheit...

C=\frac59(F-32)

As you can see, if you put in some number of Celsuis C your answer is going to be multiplied by 5/9...meaning that 1°C = 5/9°F.

As for Kelvin, it's literally just Celsuis, but about 273.15° more.

B. 5/9°F

You might be interested in
Steam enters an adiabatic turbine at 6 MPa, 600 ℃, and 80 m/s and leaves at 50 kPa, 100 ℃, and 140 m/s. If the power output of t
lisabon 2012 [21]

Answer:

W(r,out) = 5.81 MW

\eta = 86.1 %

Explanation:

we use here steam table for get value of h1, s1 etc

so use for 6MPa and 600 degree

Enthalphy of steam h1 = 3658.8 kJ/kg

Entropy of steam s 1 is = 7.1693 kJ /kg.K

and

for 50 kPa and 100 degree

Enthalphy of steam h2 = 2682.4 kJ/kg

Entropy of steam s2 is = 7.6953 kJ /kg.K

so we use here energy balance equation that is

m\times(h1 + \frac{v1^2}{2} = m\times(h2 + \frac{v2^2}{2} + W(out)      ..............1

put here value and we get m

m = \frac{5\times1000}{3658.8-2682.4+\frac{80^2-140^2}{2}\times \frac{1}{1000}}  

solve it we get

m = 5.156 kg/s

so by energy balance equation

m\psi1 = m\psi2 + W(r,out)

W(r,out) = m(\psi1 -\psi2)

W(r,out) = h1 - h2 + ΔKE + ΔPE - To(s1-s2)

W(r,out) = m[h1-h2+ \frac{v1^2-v^2}{2}- To (s1-s2)

W(r,out) = W(a,out) - m.To.(s1-s2)     ........................2

put here value

W(r,out) = 5000 - ( 5.156 × (25 + 273) ×( 7.1693 - 7.6953)

W(r,out) = 5908.19 = 5.81 MW

and

second law deficiency is

\eta = \frac{W(a,out)}{W(r,out)}     ..............................3

put here value

\eta = \frac{5}{5.81}

\eta = 86.1 %

6 0
3 years ago
5. If x = 0.6 and y = 5, the value of 2(xy)^3 is...
taurus [48]

Explanation:

=2(0.6 * 5)³

=2( 3 )³

=2(27)

=54

3 0
3 years ago
Read 2 more answers
Q.01 When charging a secondary cell, energy is stored within a dielectric material using an electric field. True or False
Nitella [24]

True, when charging a secondary cell, energy can be stored within a dielectric material using an electric field.

<h3>Relationship between dielectric material and electric field</h3>

The electric field in a capacitor separates the negative and positive charges in the dielectric material, this causes an attractive force between each plate and the dielectric.

The dielectric material can store electric energy due to its polarization in the presence of external electric field, which causes the positive charge to store on one electrode and negative charge on the other.

Thus, when charging a secondary cell, energy can be stored within a dielectric material using an electric field.

Learn more about dielectric material here: brainly.com/question/17090590

4 0
3 years ago
If the net force acting on an object is not zero, then the object is definitely
balu736 [363]

Answer:

C

Explanation:

Since the net force is changing, and not the speed, it is C

Hope this helped!

8 0
3 years ago
Two cars are facing each other. Car A is at rest while car B is moving toward car A with a constant velocity of 20 m/s. When car
lapo4ka [179]

Answer:

Let's define t = 0s (the initial time) as the moment when Car A starts moving.

Let's find the movement equations of each car.

A:

We know that Car A accelerations with a constant acceleration of 5m/s^2

Then the acceleration equation is:

A_a(t)  = 5m/s^2

To get the velocity, we integrate over time:

V_a(t) = (5m/s^2)*t + V_0

Where V₀ is the initial velocity of Car A, we know that it starts at rest, so V₀ = 0m/s, the velocity equation is then:

V_a(t) = (5m/s^2)*t

To get the position equation we integrate again over time:

P_a(t) = 0.5*(5m/s^2)*t^2 + P_0

Where P₀ is the initial position of the Car A, we can define P₀ = 0m, then the position equation is:

P_a(t) = 0.5*(5m/s^2)*t^2

Now let's find the equations for car B.

We know that Car B does not accelerate, then it has a constant velocity given by:

V_b(t) =20m/s

To get the position equation, we can integrate:

P_b(t) = (20m/s)*t + P_0

This time P₀ is the initial position of Car B, we know that it starts 100m ahead from car A, then P₀ = 100m, the position equation is:

P_b(t) = (20m/s)*t + 100m

Now we can answer this:

1) The two cars will meet when their position equations are equal, so we must have:

P_a(t) = P_b(t)

We can solve this for t.

0.5*(5m/s^2)*t^2 = (20m/s)*t + 100m\\(2.5 m/s^2)*t^2 - (20m/s)*t - 100m = 0

This is a quadratic equation, the solutions are given by the Bhaskara's formula:

t = \frac{-(-20m/s) \pm \sqrt{(-20m/s)^2 - 4*(2.5m/s^2)*(-100m)}  }{2*2.5m/s^2} = \frac{20m/s \pm 37.42 m/s}{5m/s^2}

We only care for the positive solution, which is:

t = \frac{20m/s + 37.42 m/s}{5m/s^2} = 11.48 s

Car A reaches Car B after 11.48 seconds.

2) How far does car A travel before the two cars meet?

Here we only need to evaluate the position equation for Car A in t = 11.48s:

P_a(11.48s) = 0.5*(5m/s^2)*(11.48s)^2 = 329.48 m

3) What is the velocity of car B when the two cars meet?

Car B is not accelerating, so its velocity does not change, then the velocity of Car B when the two cars meet is 20m/s

4)  What is the velocity of car A when the two cars meet?

Here we need to evaluate the velocity equation for Car A at t = 11.48s

V_a(t) = (5m/s^2)*11.48s = 57.4 m/s

7 0
3 years ago
Other questions:
  • The image shows a working flashlight.
    15·1 answer
  • The interference of two sound waves of similar amplitude but slightly different frequencies produces a loud-soft-loud oscillatio
    6·2 answers
  • Since force is dp/dt, the force due to radiation pressure reflected off of a solar sail can be calculated as 2 times the radiati
    10·1 answer
  • PLEASE HELP FOR SCIENCE PLEASE
    12·1 answer
  • What is the moment of inertia of the object starting from rest if it has a final velocity of 5.9 m/s? Express the moment of iner
    15·1 answer
  • The ceiling of a large symphony hall is covered with acoustic tiles which have small holes that are 4.35 mm center to center. If
    15·1 answer
  • A bicyclist at the top of a hit begins to coast without pedaling. The bicycle speeds up as it descends to the bottom of the hill
    9·1 answer
  • After today i might not be here no more
    6·2 answers
  • A rock falls to the ground with a force of 300N and air resistance pushes back up on the rock with a
    10·1 answer
  • 2. The longest snake ever found was a python that was 10.0 m long. Sup-
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!