Answer:
The acceleration of the object is
Explanation:
Given:
Initial velocity of object
= 200 feet/second
Final velocity of object
= 50 feet/second
Time of travel = 5 seconds
To calculate acceleration of the object we will find the rate of change of velocity with respect to time.
So, acceleration
is given by:

where
represents final velocity,
represents initial velocity and
is time of travel.
Plugging in values to evaluate acceleration.



The acceleration of the object is
(Answer). The negative sign shows the object is slowing down.
To move from one energy<span> level to another, an </span>electron<span> must gain or lose just the right amount of </span>energy<span>. </span>Electrons are said to be quantized<span> because they need a quantum of </span>energy<span> to move to a different sublevel. ... When atoms absorb </span>energy<span>, </span>electrons<span> move into higher </span>energy<span> levels.</span>
Answer:
Power is the rate which work is done.
Explanation:
<em>Power</em> is the rate which work is done. Power is measured in watts.
<em>Work</em> is the use of force to move an object. Work is measured in joules
Answer:
1408.685 KN/C
Explanation:
Given:
R = 0.45 m
σ = 175 μC/m²
P is located a distance a = 0.75 m
k = 8.99*10^9
- The Electric Field Strength E of a uniformly solid disk of charge at distance a perpendicular to disk is given by:

part a)
Electric Field strength at point P: a = 0.75 m

part b)
Since, R >> a, we can approximate a / R = 0 ,
Hence, E simplified relation becomes:

E = σ / 2*e_o
part c)
Since, a >> R, we can approximate. that the uniform disc of charge becomes a single point charge:
Electric Field strength due to point charge is:
E = k*δ*pi*R^2 / a^2
Since, R << a, Surface area = δ*pi
Hence,
E = (k*δ*pi/a^2)