Answer:
Because heat causes alcohol to volatilize, instead of burning it.
The combustion is not fulfilled since this is detached from the surface of the banknote that would be the necessary product to burn, in addition to considering that the necessary temperature is not reached
Explanation:
When water and alcohol are joined, they form a solution with high evaporation power, plus alcohol that has a higher degree of volatility than water, this is how these liquids are not retained on the surface of the banknote with heat and they are not it burns.
Answer:
a) [H₃O⁺] = 1.8x10⁻⁵ M
b) pH = 4.75
c) % rxn = 3.5x10⁻³ %
Explanation:
a) The dissociation reaction of HCN is:
HCN(aq) + H₂O(l) ⇄ H₃O⁺(aq) + CN⁻(aq)
0.5 M - x x x
The dissociation constant from the above reactions is given by:


By solving the above quadratic equation we have:
x = 1.75x10⁻⁵ M = 1.8x10⁻⁵ M = [H₃O⁺] = [CN⁻]
Hence, the [H₃O⁺] is 1.8x10⁻⁵ M.
b) The pH is equal to:
Then, the pH of the HCN solution is 4.75.
c) The % reaction is the % ionization:

Therefore, the % reaction or % ionization is 3.5x10⁻³ %.
I hope it helps you!
A contains 38.5 g of tin for each 12.3 g of fluorine:
<span>mole ratio: </span>
<span>(38.5 g)/(118.71 g/mol):(12.3 g)/(18.998 g/mol) = 0.324:0.647 = 1:2 ⇒ SnF₂ </span>
<span>B contains 56.5 g of tin for each 36.2 g of fluorine: </span>
<span>mole ratio: </span>
<span>(56.5 g)/(118.71 g/mol):(36.2 g)/(18.998 g/mol) = 0.476:1.905 = 1:4 ⇒ SnF₄
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
</span>
Answer: kinetic energy
Explanation: searched it up
B. Don't take up most of the space in an atom,