Answer:
14.5L
Explanation:
The following data were obtained from the question:
V1 = 14.1L
T1 = 13.9°C = 13.9 + 273 = 286.9K
T2 = 22°C = 22 + 273 = 295K
V2 =?
Using charles' law: V1/T1 = V2 /T2, we can obtain the new volume as follows:
14.1/286.9 = V2 /295
Cross multiply to express in linear form
286.9 x V2 = 14.1 x 295
Divide both side by 286.9
V2 = (14.1 x 295) / 286.9
V2 = 14.5L
Therefore, the new volume = 14.5L
Answer:
i am not sure tho
Explanation:
Cd ²+ + F¹- = CdF2
F fluor is a non metal so he takes the electons that Cd gives so if Vd has to give 2 electrons and F can take only 1, there has to be 2 F atoms so all the electrona can be neutral and in ionisation
Answer:
Increase the pressure of the gas
Explanation:
According to the Pressure law, for a fixed mass of gas, at a constant volume (V), the pressure (P) is directly proportional to the absolute temperature (T).
From the kinetic molecular theory, gases are composed of particles which are in constant motion, colliding with themselves as well as with the walls of their container.
When the temperature of these gas molecules is increased, the molecules acquire more kinetic energy and the rate of collisions increases. Since the container cannot expand, the increase in pressure is due to the increase in collisions between the molecules of the gas as well as with the walls of their container.
Answer:
C₁₁H₁₂NO₄
Explanation:
In order to determine the empirical formula of doxycycline, we need to follow a series of steps.
Step 1: Determine the centesimal composition
C: 59.5 mg/100 mg × 100% = 59.5%
H: 5.40 mg/100 mg × 100% = 5.40%
N: 6.30 mg/100 mg × 100% = 6.30%
O: 28.8 mg/100 mg × 100% = 28.8%
Step 2: Divide each percentage by the atomic mass of the element
C: 59.5 /12.0 = 4.96
H: 5.40/1.00 = 5.40
N: 6.30/14.0 = 0.450
O: 28.8/16.0 = 1.80
Step 3: Divide all the numbers by the smallest one
C: 4.96/0.450 = 11
H: 5.40/0.450 = 12
N: 0.450/0.450 = 1
O: 1.80/0.450 = 4
The empirical formula of doxycycline is C₁₁H₁₂NO₄
Study your experiment setup.<span> In 30 minutes, how will the air temperature in the bottles compare?</span><span> What do you predict will happen to the ice in each bottle?</span>