[Co(NH₃)₅Br]²⁺
Ligands and charges on them,
5 × NH₃ = 5 × 0 = 0
1 × Br⁻¹ = 1 × -1 = -1
Charge on sphere = +2
So, putting values in equation,
Co + (0)₅ - 1 = +2
Co + 0 - 1 = +2
Co - 1 = +2
Co = +2 + 1
Co = +3
Result:
Oxidation state of Co in [Co(NH₃)₅Br]²⁺ is +3.
Answer:
So, Luke and Sian has to increase the pH of the soil by adding base to it.
Explanation:
The pH is defined as the negative logarithm of the hydrogen ion concentration in their aqueous solution.
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
- With increase in hydrogen ion concentration the pH value decreases.
- With decrease in hydrogen ion concentration the pH value increases.
The pH of the soil after testing it on a kit comes out be 5.0, but they both need pH of the soil to 6.5.
Comparison of pH of soil:
= 5.0 < 6.5
= High hydrogen ion concentration > High hydrogen ion concentration
So, Luke and Sian has to increase the pH of the soil by adding base .Doing so will decrease the hydrogen ion concentration in the soil (where as addition of acid lower the pH of soil).
To solve this problem, we can simply calculate for the
dose by multiplying the volume of solution containing Selenium 75 and the
activity of the Selenium 75. That is:
dose = 4.1 mL * (45 μCi/mL)
dose = 184.5 μCi
By there pH . a pH below 7 is acidic . Above 7 is basic. If it’s right at 7 it’s neutral.
Correct answer is <span>X = ΔH
Reason:
1) The graph of enthalpy Vs reaction coordinate suggest the reaction is endothermic in nature. For endothermic reaction, energy if product is more than that of reactant. Hence, option 1 i.e. </span><span>X = -ΔH cannot be correct.
2) Since the reaction is endothermic in nature, </span>energy if product is more than that of reactant. Hence, option 2 i.e. X = ΔH is correct.
3) Activation energy is energy difference between Reactant (A) and transition state (B). However, as per option C, activation energy (A.E.) is energy difference between product (C) and transition state (B), which is incorrect.