Answer:

Explanation:
Assume the reaction is the combustion of propane.
Word equation: propane plus oxygen produces carbon dioxide and water
Chemical eqn: C₃H₈(g) + O₂(g) ⟶ CO₂(g) + H₂O(g)
Balanced eqn: C₃H₈(g) + 5O₂(g) ⟶ 3CO₂(g) + 4H₂O(g)
(a) Table of enthalpies of formation of reactants and products

(b)Total enthalpies of reactants and products

ΔᵣH° is negative, so the reaction is exothermic.
<span>1. What is the molar mass of gold?
Molar mass is a unit that expresses the mass of a molecule per one mol. The molar mass can be obtained by adding the neutron with the proton of the atoms. Gold has atomic number 79 so the proton is 79. The number of the neutron is 118. Then the molar mass would be: 79 + 118 = </span>197 g/mol<span>
</span><span>2. Calculate the number of moles of gold (Au) in the sample. Show your work.
</span>In this question, you are given the mass of the gold and asked for how many moles the sample has. To find the number of moles you just need to divide the weight by the molar mass.
For 45.39 grams of gold, the number of moles would be:
45.39 / (197g/mol)= 0.23 moles
3. Calculate the number of atoms of gold (Au) in the sample. Show your work.Moles is unit of a number of molecules but 1 mol doesn't represent 1 molecule. The number of atoms can be obtained by multiplying the number of moles with Avogadro number. The calculation would be:
0.23 moles * (6.023 * 10^23 molecules/mol)= 1.387 * 10^23 molecules
An increase in the temperature will speed up the reaction by increasing the frequency and efficiency of the collisions of molecules.
Answer:
Number of particles = 2.0 g*(6.0 x 10^23 particles/mol) / 20.18 g/mol
Option C is correct
Explanation:
Step 1: Data give
Mass of Ne = 2.0 grams
Molar mass of neon = 20.18 g/mol
Number of Avogadro = 6.0 *10^23 /mol
Step 2: Calculate number of moles of neon
Moles Ne = Mass of ne / Molar mass of ne
Moles Ne = 2.0 / 20.18 g/mol
Moles Ne = 0.099 moles
Step 3: Calculate nulber of particles
Number of particles = 6.022*10^23 / mol * 0.099 moles = 5.96 *10^22
Number of particles = 6.022*10^23 * (2.0g/ 20.18g/mol)
Number of particles = 2.0 g*(6.0 x 10^23 particles/mol) / 20.18 g/mol
Option C is correct