D because these are the biggest particles, and are therefore, the most dense.
According to the law of conservation of Mass:
In a chemical reaction mass can neither be created nor be destroyed
So, we can say that: Mass of A + Mass of B = Mass of C
In the given reaction,
One of the reactants weigh 5 grams and another one weighs x grams
The mass of the product of this reaction is 9 grams
<u>Mass of reactant B:</u>
Mass of A + Mass of B = Mass of C
5 + x = 9
x = 4 grams
Hey You!
The Correct Answer Is: True.
I Really Hope This Helped You, Good Luck With Your Studies! =)
POH of a 0.0072 M=-lg(0.0072) = 2.1426675
Answer:
See explanation
Explanation:
Hello there!
In this case, since the the concentrations are not given, and not even the Ksp, we can solve this problem by setting up the chemical equation, the equilibrium constant expression and the ICE table only:

Next, the equilibrium expression according to the produced aqueous species as the solid silver chloride is not involved in there:
![Ksp=[Ag^+][Cl^-]](https://tex.z-dn.net/?f=Ksp%3D%5BAg%5E%2B%5D%5BCl%5E-%5D)
And therefore, the ICE table, in which x stands for the molar solubility of the silver chloride:

I - 0 0
C - +x +x
E - x x
Which leads to the following modified equilibrium expression:

Unfortunately, values were not given, and they cannot be arbitrarily assigned or assumed.
Regards!