Answer:
i think it b
Explanation:
why your teachers giving you work it thanksgiving week
Answer:
The answer to your question is C = 1.116 J/g°C
Explanation:
Data
Q = 400 J
mass = 5.6 g
Temperature 1 = T1 = 23°C
Temperature 2 = T2 = 87°C
Specific heat = C = ?
Formula
Q = mC(T2 - T1)
- Solve for C
C = Q / m(T2 - T1)
- Substitution
C = 400 / 5.6 (87 - 23)
- Simplification
C = 400 / 5.6(64)
C = 400 / 358.4
- Result
C = 1.116 J/g°C
Answer:
1. d. The reaction is spontaneous in the reverse direction at all temperatures.
2. c. The reaction is spontaneous at low temperatures.
Explanation:
The spontaneity of a reaction is associated with the Gibbs free energy (ΔG). When ΔG < 0, the reaction is spontaneous. When ΔG > 0, the reaction is non-spontaneous. ΔG is related to the enthalpy (ΔH) and the entropy (ΔS) through the following expression:
ΔG = ΔH - T. ΔS [1]
where,
T is the absolute temperature (T is always positive)
<em>1. What can be said about an Endothermic reaction with a negative entropy change?</em>
If the reaction is endothermic, ΔH > 0. Let's consider ΔS < 0. According to eq. [1], ΔG is always positive. The reaction is not spontaneous in the forward direction at any temperature. This means that the reaction is spontaneous in the reverse direction at all temperatures.
<em>2. What can be said about an Exothermic reaction with a negative entropy change?</em>
If the reaction is exothermic, ΔH < 0. Let's consider ΔS < 0. According to eq. [1], ΔG will be negative when |ΔH| > |T.ΔS|, that is, at low temperatures.
Answer:
Check the explanation
Explanation:
functional group found in the major organic product = alpha -beta unsaturated ketone
Reaction used to form this functional group = Michael condensation reaction
Also other reactions are - Aldol condensation , Robinson annulation reaction.
Kindly check the attached image below to see the step by step solution to the question above.
CH4+2O2=> 2H2O+CO2
C- 1 on both sides
H- 4 on both sides
O - 4 on both sides