To solve this problem it is necessary to apply the concepts related to the Stefan-Boltzmann law which establishes that a black body emits thermal radiation with a total hemispheric emissive power (W / m²) proportional to the fourth power of its temperature.
Heat flow is obtained as follows:

Where,
F =View Factor
A = Cross sectional Area
Stefan-Boltzmann constant
T= Temperature
Our values are given as
D = 0.6m

The view factor between two coaxial parallel disks would be


Then the view factor between base to top surface of the cylinder becomes
. From the summation rule


Then the net rate of radiation heat transfer from the disks to the environment is calculated as





Therefore the rate heat radiation is 780.76W
She is

kilometers away from her starting point
The inner planets are rocky and have diameters of less than 13,000 kilometers. The outer planets include Jupiter, Saturn, Uranus, and Neptune. The smaller, inner planets include Mercury, Venus, Earth, and Mars. Inner planet's atmosphere is thin. (Mercury has no atmosphere). Outer Planets: Outer planets' atmosphere is very thick. The four inner planets, Mercury, Venus, Earth, and Mars, are warmer than the outer gas giants. However, the temperature of the planets does not follow a linear path from the Sun.
Hope this helps!
Please give Brainliest!
<span>A sheet of copper could cause the object to lose the most amount of heat. Copper is an essential element and a good conductor of heat. Heat can transfer from one end of a piece of copper to the other end.</span>
Acceleration = (change in speed) / (time for the change)
= (49 m/s) / (5 seconds)
= (49 / 5) m/s / s
= 9.8 m/s²