(a) The momentum of the first trolley is 5.4 kgm/s
(b) The velocity of the trolleys after impact is 2.7m/s
<u>Explanation:</u>
Given:
Mass, m₁ = 1.2kg
Velocity, v₁ = 4.5m/s
Mass, m₂ = 0.8kg
v₂ = 0
(a) Momentum of the trolley before impact, p
We know:
Momentum = mass X velocity
p = 1.2 X 4.5
p = 5.4 kgm/s
Therefore, the momentum of the first trolley is 5.4 kgm/s
(b) Speed of the trolleys after impact, v = ?
During collision, the momentum is conserved.
So,
m₁v₁ + m₂v₂ = (m₁ + m₂)v
(1.2 X 4.5) + (0.8 X 0) = (1.2 +0.8) X v
5.4 + 0 = 2v
v = 2.7m/s
Therefore, the velocity of the trolleys after impact is 2.7m/s
<h2>
Answer: 10615 nm</h2>
Explanation:
This problem can be solved by the Wien's displacement law, which relates the wavelength
where the intensity of the radiation is maximum (also called peak wavelength) with the temperature
of the black body.
In other words:
<em>There is an inverse relationship between the wavelength at which the emission peak of a blackbody occurs and its temperature.</em>
Being this expresed as:
(1)
Where:
is in Kelvin (K)
is the <u>wavelength of the emission peak</u> in meters (m).
is the <u>Wien constant</u>, whose value is 
From this we can deduce that the higher the black body temperature, the shorter the maximum wavelength of emission will be.
Now, let's apply equation (1), finding
:
(2)
Finally:
This is the peak wavelength for radiation from ice at 273 K, and corresponds to the<u> infrared.</u>
Answer:
speed = 65.7 km/h
Explanation:
speed = distance over time, so you'd do 460 km/7 hrs to get your speed in km/h
To find the time zone in hours of a particular location, you can take the longitude -- in degrees -- and divide it by 15. So, for example, 75° E would be 75/15 which equals 5. That translates to the time zone being 5 hours ahead of UTC or GMT time, which can also be labeled as UTC+5. i hope this helped if not then sorry
Answer:
filament bulb, filament lamp
Explanation: