Answer:Warm ocean currents originate near the equator and move towards the poles or higher latitudes while cold currents originate near the poles or higher latitudes and move towards the tropics or lower latitude.
Explanation:
Answer:
Mass = 57.05 g
Explanation:
Given data:
Volume of SO₂ = 20.0 L
Temperature = standard = 273 K
Pressure = standard = 1 atm
Mass of SO₂ = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
n = PV/RT
n = 1 atm × 20.0 L / 0.0821 atm.L/ mol.K× 273 k
n = 20.0 / 22.41/mol
n = 0.89 mol
Mass of SO₂:
Mass = number of moles × molar mass
Mass = 0.89 mol × 64.1 g/mol
Mass = 57.05 g
Brainest please thank you
Answer: A 59.5 degree celcius
The equation that we will use to solve this problem is :
PV = nRT where:
P is the pressure of gas = 1.8 atm
V is the volume of gas = 18.2 liters
n is the number of moles of gas = 1.2 moles
R is the gas constant = 0.0821
T is the temperature required (calculated in kelvin)
Using these values to substitute in the equation, we find that:
(1.8)(18.2) = (1.2)(0.0821)(T)
T = 332.5 degree kelvin
The last step is to convert the degree kelvin into degree celcius:
T = 332.5 - 273 = 59.5 degree celcius
Answer:
a.
Explanation:
Assuming that Liquid X is considered to possess a greater viscosity as well as higher surface tension than liquid Y. Then, liquid X will tend to harbour more pressure inside the liquid.
In addition to that, the greater the surface tension, the greater the force required to expand the liquid's surface area.
This in turn makes the force required to make the loop 5% wider to be greater in FX rather than FY.
Thus, option a is the correct answer.