<h2><u>
Answer:</u></h2>
(These are not rounded to the correct decimal)
130.94 atm
13,266.6 kPa
99,571.4 mmHg
<h2><u>
Explanation:</u></h2>
<u></u>
PV = nRT
V = 245L
P = ?
R = 0.08206 (atm) , 8.314 (kPa) , 62.4 (mmHg)
T = 273.15 + 27 = 300.15K
n = 1302.5 moles
How I found (n).
5.21kg x 1000g/1kg x 1 mole/4.0g = 1302.5 moles
Now, plug all the numbers into the equation.
Pressure in atm = (1302.5)(0.08206)(300.15) / 245 = 130.94 atm (not rounded to the correct decimal)
Pressure in kPa = (1302.5)(8.314)(300.15) / 245 = 13,266.6 kPa (not rounded to the correct decimal)
Pressure in mmHg = (1302.5)(62.4)(300.15) / 245 = 99,571.4 mmHg (not rounded to the correct decimal)
When a sudden break or shift occurs the energy radiates it comes out of the water
Answer:
B) 7.7
Explanation:
For the reaction Ag2CO3(s) + CrO42‒(aq) → Ag2CrO4(s) + CO32‒(aq)
Kc = (CO₃²⁻) / (CrO₄²⁻)
and the Ksp given are
Ag₂CO₃ ⇒ 2 Ag⁺(aq) + CO₃²⁻(aq) Ksp₁ = (Ag⁺)²(CO₃²⁻)
Ag₂CrO₄ ⇒ 2 Ag⁺(aq)+ CrO₄²⁻(aq) Ksp₂ = (Ag⁺)²(CrO₄²⁻)
Where (...) indicate concentrations M
Notice if we divide the expressions for Ksp we get:
Ksp₁/Ksp₂ = (CO₃²⁻) / (CrO₄²⁻) = 8.5 x 10⁻¹² / 1.1 x 10⁻¹² = 7.7
which is the desired answer.
That would be correct as stated.
Answer:
it can occur between hydrogen and 3 other elements
Explanation:
These elements are:
Nitrogen
Oxygen
Flourine