Answer:c
Explanation:
it’s gained kinetic from the gravitational potential energy at the top
A chemist is using a solution of HNO₃ that has a pH of 3.75. what is [H⁺] for the solution is 1.7 × 10⁻⁴M.
<h3>How do we calculate the [
H⁺]?</h3>
Concentration of H⁺ ion will be calculated by using the below equation of pH as:
pH = -log[H⁺]
or [H⁺] = 
Given that, pH = 3.75
So concentration of H⁺ ion will be calculated as:
[H⁺] = 
[H⁺] = 1.7 × 10⁻⁴M
Hence concentration of H⁺ ion is 1.7 × 10⁻⁴M.
To know more about pH & [H⁺], visit the below link:
brainly.com/question/8758541
The number of liters of 3.00 M lead (II) iodide : 0.277 L
<h3>Further explanation</h3>
Reaction(balanced)
Pb(NO₃)₂(aq) + 2KI(aq) → 2KNO₃(aq) + PbI₂(s)
moles of KI = 1.66
From the equation, mol ratio of KI : PbI₂ = 2 : 1, so mol PbI₂ :

Molarity shows the number of moles of solute in every 1 liter of solute or mmol in each ml of solution

Where
M = Molarity
n = Number of moles of solute
V = Volume of solution
So the number of liters(V) of 3.00 M lead (II) iodide-PbI₂ (n=0.83, M=3):

How does the water help a fossil form?
The answer is 1