Answer: CH₃CN and H₂O.
Explanation:
1) The spieces present in a solution may be either the molecules, in case of covalent compounds, or ions, in case of ionic compounds that dissociate (ionize).
2) Both, CH₃CN and H₂O are covalent (polar covalent) substances, so they do not ionize and the spieces in the solution are the molecules per se.
3) In solution, the molecules of H₂O will solvate the molecules of CH₃CN, meaning that H₂O molecules are able to separate the molecules of CH₃N from each other, and so every molecule of CH₃CN will end surrounded by many molecules of H₂O.
This happens because the interaction between the polar molecules of the two different compounds is strong enough to overcome the intermolecular forces between the molecules of the same compound.
It is very cold there 90 degrees celsius so dress very warm!
one substance becomes two new substances
For the first question, salt is soluble while sand is insoluble or not dissolvable in water. The salt should have vanished or melted, but the sand stayed noticeable or visible, making a dark brown solution probably with some sand particles caught on the walls of the container when the boiling water was put in to the mixture of salt and sand. The solubility of a chemical can be disturbed by temperature, and in the case of salt in water, the hot temperature of the boiling water enhanced the salt's capability to melt in it.
For the second question, the melted or dissolved salt should have easily made its way through the filter paper and into the second container, while the undissolved and muddy sand particles is caught on the filter paper. The size of the pores of the filter paper didn’t change. On the contrary, the size of the salt became smaller because it has been dissolved which is also the reason why it was able to go through the filter paper, while the size of the sand may have doubled or even tripled which made it harder to pass through.