Explanation:
The linear analog of angle is angle itself.
The linear analog of angular velocity is linear velocity.
ω is angular velocity, therefore linear velocity is given by v
∴ for linear velocity, 
for angular velocity,
The linear analog of angular acceleration is acceleration.
α is angular acceleration whereas as a is linear acceleration.
∴ for linear acceleration, v = u + a.t
for angular acceleration, 
The linear analog of moment of inertia is mass.
I is moment of inertia and m is mass,
∴ for linear analog, F = m.a
for angular analog, τ - I.α
Answer:
5.4 ms⁻¹
Explanation:
Here we have to use conservation of energy. Initially when the stick is held vertical, its center of mass is at some height above the ground, hence the stick has some gravitational potential energy. As the stick is allowed to fall, its rotates about one. gravitational potential energy of the stick gets converted into rotational kinetic energy.
= length of the meter stick = 1 m
= mass of the meter stick
= angular speed of the meter stick as it hits the floor
= speed of the other end of the stick
we know that, linear speed and angular speed are related as

= height of center of mass of meter stick above the floor = 
= Moment of inertia of the stick about one end
For a stick, momentof inertia about one end has the formula as

Using conservation of energy
Rotational kinetic energy of the stick = gravitational potential energy

Answer:
B. Water and sugar.
Explanation:
In the given options water and sugar would be the poor conductor of electricity. Other given options such as water and salt, water and Hcl and water and NaOH are better conductor of electricity because Hcl ,NaOH, salt (Nacl) can break into their ionic form whereas water and sugar will not.
Answer:à
Explanation:waves carry energy in the direction in which they move
Kinetic energy is the energy possessed by an object on motion. it is expressed as follows:
KE = 0.5mv^2
where m is the mass and v is the velocity of the object. We calculate as follows:
KE = 0.5mv^2
1.1x10^9 J = 0.5(8.0x10^4 kg) v^2
v = 165.83 m/s