Answer:
The phenomenon known as "tunneling" is one of the best-known predictions of quantum physics, because it so dramatically confounds our classical intuition for how objects ought to behave. If you create a narrow region of space that a particle would have to have a relatively high energy to enter, classical reasoning tells us that low-energy particles heading toward that region should reflect off the boundary with 100% probability. Instead, there is a tiny chance of finding those particles on the far side of the region, with no loss of energy. It's as if they simply evaded the "barrier" region by making a "tunnel" through it.
Explanation:
Answer:
x(t) = -3sin2t
Explanation:
Given that
Spring force of, W = 720 N
Extension of the spring, s = 4 m
Attached mass to the spring, m = 45 kg
Velocity of, v = 6 m/s
The proper calculation is attached via the image below.
Final solution is x(t) = -3.sin2t
Answer:
f something happens to go wrong at a nuclear reactor, anyone living in a 10-mile radius of the plant may have to evacuate. This map also shows a 50-mile evacuation zone, the safe distance that the U.S. government recommended to Americans who were near
because
<span>It is used to establish and maintain a proton gradient.</span>