1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kherson [118]
2 years ago
14

Which is NOT a type of blood vessel in the circulatory system?

Chemistry
1 answer:
VARVARA [1.3K]2 years ago
4 0
There are five main types of blood vessels: arteries, arterioles, capillaries, venules and veins. Arteries carry blood away from the heart to other organs. They can vary in size.



No choice so i wrote this
You might be interested in
C2F4 effuses through a barrier at a rate of 4.6x10-6 mol/hour, while an unknown gas effuses at a rate of 5.8x10-6 mol/hour. What
umka21 [38]
The  molar mass  of  the unknown  compound  is   calculated   as   follows

let the unknown  gas be represented by   letter  Y

Rate of C2F4/  rate of  Y  = sqrt of   molar  mass of gas Y/ molar mass of  C2F4

 =  (4.6  x10^-6/ 5.8  x10^-6)  = sqrt  of  Y/ 100

remove  the  square  root  sign  by  squaring  in both  side

(4.6  x  10^-6 / 5.8  x10^-6)^2 =  Y/100

= 0.629 =Y/100

multiply  both side  by  100

Y=  62.9 is  the molar  mass of unknown  gas



5 0
3 years ago
Calculate the change in the entropy of the system and also the change in the entropy of the surroundings, and the resulting tota
Ghella [55]

Answer:

(a) ΔS_{sys}  = 2.881 J/K; ΔS_{sur}  = -2.881 J/K; total change in entropy = 0

(b)ΔS_{sys}  = 2.881 J/K; ΔS_{sur}  = 0 ; total change in entropy = 2.881 J/K

(c) ΔS_{sys}  = 0 ; ΔS_{sur}  = 0 ; total change in entropy = 0

Explanation:

In the given problem, we need to calculate the change in the entropy of the system and also the change in the entropy of the surroundings, and the resulting total change in entropy, when a sample of nitrogen gas of mass 14 g at 298 K and 1.00 bar doubles its volume. We have the following variable:

mass (m) = 14 g

Temperature = 298 K

Pressure = 1.00 bar

Initial volume = V_{1}

Final volume = V_{2} = 2V_{1}

(a) Change in entropy of the system ΔS_{sys} = nRIn\frac{V_{2} }{V_{1} }

where R = 8.314 J/(mol*K)

n = number of moles = mass/molar mass = 14/ 28 = 0.5 moles

ΔS_{sys} = 0.5*8.314*ln2 = 2.881 J/K

Change in entropy of the surrounding ΔS_{sur} = -2.881 J/K

Therefore, for a reversible process, the total change in entropy = ΔS_{sys}+ΔS_{sur} = 2.881 - 2.881 = 0

(b) Because entropy is a state function, we use the same procedure as in part (a). Thus, ΔS_{sys}  = 2.881 J/K

Since surrounding does not change in this process ΔS_{sur} = 0.

total change in entropy = ΔS_{sys}+ΔS_{sur} = 2.881 - 0 = 2.88 J/K

(c) For an adiabatic reversible expansion, q(rev) = 0, thus:

ΔS_{sys}  = 0

Since heat energy is not transferred from the system to the surrounding

ΔS_{sur}  = 0

total change in entropy = ΔS_{sys}+ΔS_{sur} = 0

6 0
2 years ago
A dilute solution of bromine in carbon tetrachloride behaves as an ideal-dilute solution. The vapour pressure of pure CCl4 is 33
ANEK [815]

Explanation:

The given data is as follows.

     Vapour pressure of pure CCl_{4} = 33.85 Torr

         Temperature = 298 K

      Mole fraction of Br_{2} = 122.36 torr

Therefore, calculate the vapor pressure of Br_{2} as follows.      

     Vapour pressure of Br_{2} = mole fraction of Br_{2} x K of Br_{2}

                                    = 0.050 x 122.36 Torr

                                   = 6.118 Torr

So, vapor pressure of Br_{2} is 6.118 Torr .

Now, calculate the vapor pressure of carbon tetrachloride as follows.

     Vapour pressure of CCl_{4} = mole fraction of CCl_{4} x Pressure of CCl_{4}

                                     = (1 - 0.050) × 33.85 Torr

                                     = 32.1575 Torr

So, vapor pressure of CCl_{4} is 32.1575 Torr  .

Hence, the total pressure will be as follows.

                         = 6.118 Torr + 32.1575 Torr

                         = 38.2755 Torr

Therefore, composition of CCl_{4} = \frac{32.1575 Torr}{38.2755 Torr}

                         = 0.8405

Composition of CCl_{4} is 0.8405 .

And, composition of Br_{2} = \frac{6.118 Torr}{38.2755 Torr}

                                                  = 0.1598

Composition of Br_{2} is 0.1598 .

6 0
3 years ago
Number of hydrogen atom(s) in water (H2O)
Ray Of Light [21]

Answer:

Maybe

Explanation:

the number of hydrogen atom in water is 2..

hope it helps

7 0
2 years ago
State which statement is a physical change or a chemical change:
Oliga [24]

Answer:

Physical change: A,C ,D, F, H, I

Chemical Change: B, E, G, J, K

4 0
3 years ago
Other questions:
  • A gram of gold has the same ____ as a kilogram of gold
    14·1 answer
  • A 25.00 mL flask contains methane (CH4) gas at 22.5°C. The pressure in the flask is 225.2 mmHg. How many moles of methane are in
    15·1 answer
  • Help 10
    7·2 answers
  • If 2 objects have the same volume of 10cm3 and object A has a mass of 2 grams and object B has a mass of 4 grams, how do their d
    8·2 answers
  • The Periodic Table of Elements is organized by the number of:
    7·2 answers
  • What are nucleotides, genes and genomes?
    5·1 answer
  • What does Gibbs free energy predict?
    5·1 answer
  • 11<br> Na<br> Sodium<br> 22.99<br> What does 22.99 stand for
    12·1 answer
  • Which of the following is not a part of the carbon cycle
    9·2 answers
  • Where does Earth's Internal Energy Come From? *
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!