Answer:
1. 2+ (
).
2. 0 (
).
Explanation:
Hello,
In this case, the described chemical reaction is a redox reaction in fact, since the oxidation states of both magnesium and copper change as shown due to the displacement:

Therefore:
1. Since copper is the cation in the copper (II) nitrate, the (II) means that its charge is 2+ (
).
2. Since copper is alone, it means no electrons are being neither shared not given, its charge is 0 (
).
Best regards.
The chemical reaction of Cavendish involving zinc would be a reaction between hydrochloric acid and zinc yielding zinc chloride and hydrogen gas. The balanced chemical equation would be:
2Zn + 2HCl = 2ZnCl + H2
This is an example of a single replacement reaction where zinc replaces hydrogen in the acid molecule.
One mole of hydrogen peroxide contains 6.02 x 10^23 molecules of hydrogen peroxide. And each molecule contains 4 atoms, so the answer is 4 x 6.02 x 10^23.
Answer:
2Fe + O₂ -------------------> 2FeO
8 mol Fe produce
8 mol Fe * 2 mol FeO / 2 mol Fe = 8 mol FeO
Mass of FeO = 8 mol FeO * 71.85 g/mol = 574.8 grams FeO
Explanation:
Having 8 mol of Iron means 8 moles of iron oxide can be produced. Each mole of iron oxide has a molecular weight of 71.85 grams. Therefore, 8 moles of iron oxide should weight 574.8 grams.
Answer:
Option B. The reaction will shift to the left in the direction of the reactants.
Explanation:
The equation for the reaction is given below:
CO₂ + 2H₂O <=> CH₄ + O₂
Enthalpy change (ΔH) = +890 KJ
The reaction illustrated by the equation is endothermic reaction since the enthalpy change (ΔH) is positive.
Increasing the temperature of an endothermic reaction will shift the equilibrium position to the right and decrease the temperature will shift the equilibrium position to the left.
Therefore, decreasing the temperature of the system illustrated by the equation above, will shift the reaction to the left in the direction of the reactants.
Thus, option B gives the right answer to the question.