Answer:
80.27%
Explanation:
Let's consider the following balanced equation.
2 Fe³⁺(aq) + Sn²⁺(aq) ⇒ 2Fe²⁺(aq) + Sn⁴⁺(aq)
First, we have to calculate the moles of Sn²⁺ that react.

We also know the following relations:
- According to the balanced equation, 1 mole of Sn²⁺ reacts with 2 moles of Fe³⁺.
- 1 mole of Fe³⁺ is oxidized from 1 mole of Fe.
- The molar mass of Fe is 55.84 g/mol.
Then, for 1.348 × 10⁻3 moles of Sn²⁺:

If there are 0.1505 g of Fe in a 0.1875 g sample, the mass percentage of Fe is:

Answer:
350 g dye
0.705 mol
2.9 × 10⁴ L
Explanation:
The lethal dose 50 (LD50) for the dye is 5000 mg dye/ 1 kg body weight. The amount of dye that would be needed to reach the LD50 of a 70 kg person is:
70 kg body weight × (5000 mg dye/ 1 kg body weight) = 3.5 × 10⁵ mg dye = 350 g dye
The molar mass of the dye is 496.42 g/mol. The moles represented by 350 g are:
350 g × (1 mol / 496.42 g) = 0.705 mol
The concentration of Red #40 dye in a sports drink is around 12 mg/L. The volume of drink required to achieve this mass of the dye is:
3.5 × 10⁵ mg × (1 L / 12 mg) = 2.9 × 10⁴ L
Answer:
Coal
Explanation:
Once it's all been mined, there's no more. It's not like we grow it.
Answer:
The products are Calcium oxide and Carbon dioxide.
Explanation:
When calcium carbonate is heated, thermal decomposition occurs.
Calcium calcium → Calcium oxide + Carbon dioxide
<span>The distant regions of the Universe look older than the space near the Earth. The more distant are, the older is. But the information we can have is lesser due to the distance.</span>