1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vodka [1.7K]
2 years ago
6

A building under construction requires building materials to be raised to theupper floors by cranes or elevators. An amount of c

ement is lifted 76.2 m by acrane, which exerts a force on the cement that is slightly larger than the weightof the cement. If the network done on the cement is 1.31 × 103 J, what is themagnitude of the net force exerted on the cement?
Physics
1 answer:
gizmo_the_mogwai [7]2 years ago
4 0

Answer:

<h3>17.19N</h3>

Explanation:

Work = 1.31 × 10³ = 1310

F = W/D = 1310/76.2

≈ 17.19N

You might be interested in
A car travels across Texas m miles at the rate of t miles per hour. How many hours does the trip take??
Marianna [84]

Answer: The trip takes \frac{m}{t}hours

Explanation:

Velocity V is the variation of the position of a body (distance traveled d) with time T:

V=\frac{d}{T}

In this case, the car travels a distance d=m miles at a velocity V=t \frac{miles}{hour} and we need to find the time it takes the trip.

Isolating  T:

T=\frac{d}{V}=\frac{m miles}{t \frac{miles}{hour}}

Finally:

T=\frac{m}{t}hours

8 0
3 years ago
A bumper cart has a mass of 200 kg and has a protective bumper around it that behaves like a spring. The spring constant is 5000
34kurt
Part A:
For this part we’re assuming all the kinetic energy of the moving bumper car is converted into elastic potential energy in the spring since the car is brought to rest. Therefore you can find the total kinetic energy to get your answer:

KE = ½ mv^2
KE = ½ (200)(8)^2
KE = 6400 J

Part B:
Now you can use Hooke’s law to find the force:

F = kx
F = (5000)(0.2)
F = 1000 N
4 0
3 years ago
Suppose that a wind is blowing in the direction S45°E at a speed of 30 km/h. A pilot is steering a plane in the direction N60°E
Kay [80]

Answer:

The true course: 40.29^\circ north of east

The ground speed of the plane: 96.68 m/s

Explanation:

Given:

  • V_w = velocity of wind = 30\ km/h\ S45^\circ E = (30\cos 45^\circ\ \hat{i}-30\sin 45^\circ\ \hat{j})\ km/h = (21.21\ \hat{i}-21.21\ \hat{j})\ km/h
  • V_p = velocity of plane in still air = 100\ km/h\ N60^\circ E = (100\cos 60^\circ\ \hat{i}+100\sin 60^\circ\ \hat{j})\ km/h = (50\ \hat{i}+86.60\ \hat{j})\ km/h

Assume:

  • V_r = resultant velocity of the plane
  • \theta = direction of the plane with the east

Since the resultant is the vector addition of all the vectors. So, the resultant velocity of the plane will be the vector sum of the wind velocity and the plane velocity in still air.

\therefore V_r = V_p+V_w\\\Rightarrow V_r = (50\ \hat{i}+86.60\ \hat{j})\ km/h+(21.21\ \hat{i}-21.21\ \hat{j})\ km/h\\\Rightarrow V_r = (71.21\ \hat{i}+65.39\ \hat{j})\ km/h

Let us find the direction of this resultant velocity with respect to east direction:

\theta = \tan^{-1}(\dfrac{65.39}{71.21})\\\Rightarrow \theta = 40.29^\circ

This means the the true course of the plane is in the direction of 40.29^\circ north of east.

The ground speed will be the magnitude of the resultant velocity of the plane.

\therefore Magnitude = \sqrt{71.21^2+65.39^2} = 96.68\ km/h

Hence, the ground speed of the plane is 96.68 km/h.

5 0
3 years ago
A car of 1400 kg is subject to multiple forces which produce an acceleration of 3.5 m/s2 directed north. Find the net force.​
Greeley [361]

Answer:

will

Explanation:

3 0
3 years ago
In a game of pool, the cue ball strikes another ball of the same mass and initially at rest. After the collision, the cue ball m
ikadub [295]

(a) -39.4^{\circ}

Let's take the initial direction (before the collision) of the cue ball has positive x-direction.

Along the y-direction, the total initial momentum is zero:

p_y =0

Therefore, since the total momentum must be conserved, it must be zero also after the collision. So we write:

0 = m v_1 sin \phi_1 + m v_2 sin \phi_2 \\0 = m(4.60) sin (28^{\circ}) + m(3.40) sin \phi_2

where

m is the mass of each ball

v_1= 4.60 m/s is the velocity of the cue ball after the collision

v_2 = 3.40 m/s is the velocity of the second ball after the collision

\phi_1=28.0^{\circ} is the angle of the cue ball with the x-axis

\phi_2 is the angle of the second ball

Solving for \phi_2, we find the angle between the direction of motion of the second ball and the original direction of motion:

sin \phi_2 = -\frac{4.60 sin 28}{3.40}=-0.635\\\phi_2 = -39.4^{\circ}

(b) 6.69 m/s

To find the original speed of the cue ball, we analyze the situation along the horizontal direction.

First, we calculate the total momentum along the x-direction after the collision, which is:

p_x = m v_1 cos \phi_1 + m v_2 cos \phi_2 \\0 = m(4.60) cos (28^{\circ}) + m(3.40) cos (-39.4^{\circ})=6.69 m

The initial total momentum along the x-direction as

p_x = m u

where

m is the mass of the cue ball

u is the initial velocity of the cue ball

The momentum along this direction must be conserved, so we can equate the two expressions and find the value of u:

mu = 6.69 m\\u = 6.69 m/s

7 0
3 years ago
Other questions:
  • Multiply the following numbers, using scientific notation and the correct amount of significant digits. 1.003 m⋅3.09 =
    15·2 answers
  • A 0.35-kgkg cord is stretched between two supports, 7.4 mm apart. When one support is struck by a hammer, a transverse wave trav
    9·1 answer
  • Consider a household that uses 22.0 kW-hour of electricity per day on average. Most of that electricity is supplied by fossil fu
    15·1 answer
  • ______ Is the degree of exactness of a measurement; _____ Describes how well the results of measurement agree with the real valu
    6·2 answers
  • You have a 7.04 W, 236 Ω resistor.
    12·1 answer
  • Which term describes a gap in the geologic record that occurs when sedimentary rocks cover an eroded surface?
    5·2 answers
  • The name of the SI unit for force is the watt<br> \
    7·1 answer
  • A car of mass 1800 kg can be just be lifted. What is the least force that the electromagnet must use to lift the car? (1 g = 10
    15·1 answer
  • A 200g air-track glider is attached to a spring. The glider is pushed in 10cm and released. A student with a stopwatch finds tha
    9·1 answer
  • Hi! Whoever can answer this question the best I will give the brainliest answer!!
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!