To find or discover by investigation?
Answer:
The speed of the boxes are 1 m/s.
Explanation:
Given that,
Mass of box = 1 kg
Mass of another box = 2 kg
Suppose 1 kg box moves with 3 m/s speed.
We need to calculate the speed of the boxes
Using formula of conservation of momentum

Where, u = initial velocity
v = final velocity
Put the value into the formula



Hence, The speed of the boxes are 1 m/s.
To solve this problem it is necessary to apply the concepts related to the frequency in a spring, the conservation of energy and the total mechanical energy in the body (kinetic or potential as the case may be)
PART A) By definition the frequency in a spring is given by the equation

Where,
m = mass
k = spring constant
Our values are,
k=1700N/m
m=5.3 kg
Replacing,


PART B) To solve this section it is necessary to apply the concepts related to the conservation of energy both potential (simple harmonic) and kinetic in the spring.

Where,
k = Spring constant
m = mass
y = Vertical compression
v = Velocity
This expression is equivalent to,

Our values are given as,
k=1700 N/m
V=1.70 m/s
y=0.045m
m=5.3 kg
Replacing we have,

Solving for A,



PART C) Finally, the total mechanical energy is given by the equation



Answer:

Explanation:
given,
coefficient of kinetic friction, μ = 0.25
Speed of sled at point A = 8.6 m/s
Speed of sled at point B = 5.4 m/s
time taken to travel from point A to B.
we know,
J = F Δ t
J is the impulse
where F is the frictional force.
t is the time.
we also know that impulse is equal to change in momentum.

frictional force
F = μ N
where as N is the normal force
now,






time taken to move from A to B is equal to 1.31 s