" <em>Energy is never created or destroyed.</em> "
All the rest is commentary.
The energy of a light wave is calculated using the formula
E = hc/λ
h is the Planck's constant
c is the speed of light
λ is the wavelength
For the ir-c, the range is
<span>6.63 x 10^-34 (3x10^8) / 3000 = 6.63 x 10 ^-29 J
</span>6.63 x 10^-34 (3x10^8) / 1000000 = 1.99 x 10^-31 J
For the ir-a, the range is
6.63 x 10^-34 (3x10^8) / 700 = 2.84 x 10^-28 J
6.63 x 10^-34 (3x10^8) / 1400 = 1.42 x 10^-28 J
The main requirement for a good conductor of electricity is to have a lot of valence electrons. Valence electrons are the electrons of the outer shells of atoms not bound with other atoms (for example through covalent bounds). These electrons are "free to escape" as soon as an electric field with enough intensity is applied to the material, and therefore these electrons will be free to move in the material producing an electric current.
During a total solar eclipse, the moon passes between Earth and the sun. This completely blocks out the sun’s light. However, the moon is about 400 times smaller than the sun. How can it block all of that light?
The FREQUENCY of light remains unchanged once it leaves the source.