1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nalin [4]
2 years ago
5

A particular light source gives off light waves with a measured wavelength of

Physics
1 answer:
Umnica [9.8K]2 years ago
3 0

The frequency of the light source is 1.5 x 10¹⁵ Hz.

<h3>Frequency of the light source</h3>

The frequency of the light source is determined using the following equations;

c = fλ

where;

c is speed of light

f is the frequency

λ is the wavelength

f = (3 x 10⁸) / (2 x 10⁻⁷)

f = 1.5 x 10¹⁵ Hz

Thus, the frequency of the light source is 1.5 x 10¹⁵ Hz.

Learn more about frequency of light here: brainly.com/question/10728818

You might be interested in
What is a hydraulic system​
Simora [160]

Explanation:

Hydraulic systems use the pump to push hydraulic fluid through the system to create fluid power. The fluid passes through the valves and flows to the cylinder where the hydraulic energy converts back into mechanical energy. The valves help to direct the flow of the liquid and relieve pressure when needed

7 0
3 years ago
Convertir 340,5 grados Fahrenheit a centígrados
Hunter-Best [27]

Answer:

171.38889

Explanation:

not really any i just looked it up,

6 0
3 years ago
The voltage across the terminals of a 250nF capacitor is푣푣=�50푉푉, 푡푡≤0(푚푚1푒푒−4000푡푡+푚푚2푡푡푒푒−4000푡푡)푉푉, 푡푡 ≥0The initial current
olga2289 [7]

The first part of the question is not complete and it is;

The voltage across the terminals of a 250 nF capacitor is 50 V, A1e^(-4000t) + (A2)te^(-4000t) V, t0, What is the initial energy stored in the capacitor? Express your answer to three significant figures and include the appropriate units. t

Answer:

A) initial energy = 0.3125 mJ

B) A1 = 50 and A2 = 1,800,000

C) Capacitor Current is given by the expression;

I = e^(-4000t)[0.95 - 1800t]

Explanation:

A) In capacitors, Energy stored is given as;

U = (1/2)Cv²

Where C is capacitance and v is voltage.

So initial kinetic energy;

U(0) = (1/2)C(vo)²

From the question, C = 250 nF and v = 50V

So, U(0) = (1/2)(250 x 10^(-9))(50²) = 0.3125 x 10^(-3)J = 0.3125 mJ

B) from the question, we know that;

A1e^(-4000t) + (A2)te^(-4000t)

So, v(0) = A1e^(0) + A2(0)e^(0)

v(0) = 50

Thus;

50 = A1

Now for A2; let's differentiate the equation A1e^(-4000t) + (A2)te^(-4000t) ;

And so;

dv/dt = -4000A1e^(-4000t) + A2[e^(-4000t) - 4000e^(-4000t)

Simplifying this, we obtain;

dv/dt = e^(-4000t)[-4000A1 + A2 - 4000A2]

Current (I) = C(dv/dt)

I = (250 x 10^(-9))e^(-4000t)[-4000A1 + A2 - 4000tA2]

Thus, Initial current (Io) is;

Io = (250 x 10^(-9))[e^(0)[-4000A1 + A2]]

We know that Io = 400mA from the question or 0.4 A

Thus;

0.4 = (250 x 10^(-9))[-4000A1 + A2]

0.4 = 0.001A1 - (250 x 10^(-9)A2)

Substituting the value of A1 = 50V;

0.4 = 0.001(50) - (250 x 10^(-9)A2)

0.4 = 0.05 - (250 x 10^(-9)A2)

Thus, making A2 the subject, we obtain;

(0.4 + 0.05)/(250 x 10^(-9))= A2

A2 = 1,800,000

C) We have derived that ;

I = (250 x 10^(-9))e^(-4000t)[-4000A1 + A2 - 4000tA2]

So putting values of A1 = 50 and A2 = 1,800,000 we obtain;

I = (250 x 10^(-9))e^(-4000t)[(-4000 x 50) + 1,800,000 - 4000(1,800,000)t]

I = e^(-4000t)[0.05 + 0.45 - 1800t]

I = e^(-4000t)[0.95 - 1800t]

5 0
3 years ago
It was a dark and stormy night, when suddenly you saw a flash of lightning. Three-and-a-half seconds later you heard the thunder
Gekata [30.6K]
We're going to multiply the time it took for you to hear thunder (3.5 seconds) by the speed of sound in air (340 m/s)

3.5 x 340 = 1190

The lightning bolt was 1,190 meters away.
3 0
3 years ago
Example No. 10
Alexxx [7]

The force constant of the spring is determined as 14,222.2 N/m.

<h3>Force constant of the spring</h3>

Apply the principle of conservation of energy,

K.E = U

where;

  • K.E kinetic energy of the elevator
  • U is elastic potential energy of the spring

¹/₂mv² = ¹/₂kx²

mv² = kx²

k = mv²/x²

Where;

  • m is mass of the elevator
  • v is speed
  • x is compression of the spring

k = (2000 x 8²)/(3²)

k = 14,222.2 N/m

Thus, the force constant of the spring is determined as 14,222.2 N/m.

Learn more about force constant here: brainly.com/question/1968517

#SPJ1

5 0
1 year ago
Other questions:
  • The nucleus of any atom requires a strong force to hold it together. This strong force is required because A) the nucleus of any
    9·2 answers
  • A word that means to squeeze a gas in to a smaller place
    15·2 answers
  • When plastic deformation of a material occurs, the material _____. regains its original shape when the stress is removed is perm
    5·2 answers
  • Eric is creating a timeline of the formation of the solar system. Which sequence best describes the formation of the solar syste
    14·2 answers
  • The point inside the earth where the energy release occurs
    12·1 answer
  • State the laws of vibration of a stringed Instrument​
    9·1 answer
  • B. A bird in air looks a fish vertically below it inside the water from a distance 5m from surface of water and fish lies at dep
    10·1 answer
  • Any change in the cross section of the vocal tract shifts the individual formant frequencies, the direction of the shift dependi
    14·1 answer
  • Lightning produces a maximum air temperature on the order of 104K, whereas a nuclear explosion produces a temperature on the ord
    5·1 answer
  • a 2000kg car initially traveling at a speed of 15 m/s is accelerated by a constant force of 10000 n for 3 seconds. the new speed
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!