Answer:
The activation energy is 7.11 × 10⁴ J/mol.
Explanation:
Let's consider the Arrhenius equation.

where,
k is the rate constant
A is a collision factor
Ea is the activation energy
R is the ideal gas constant
T is the absolute temperature
The plot of ln k vs 1/T is a straight line with lnA as intercept and -Ea/R as slope. Then,

Strontium atom loses 2 electrons to become an ion with 2 electrons lesser than its atom. Your answer is C.
The answer is C. Light because light is a form of energy
Answer: try to understand coz the question is not valid
Explanation: Explain the relationship between forward and reverse reactions at equilibrium and predict how changing the amount of a reactant or product (creating a stress) will affect that relationship.For example (select one from each underlined section)If the amount of (reactant or product) increases, the rate of the (forward or reverse)reaction will (increase or decrease)to reach a new equilibrium. If the amount of (reactant or product) decreases, the rate of the (forward or reverse)reaction will (increase or decrease)to reach a new equilibrium. Procedure: Access the virtual lab and complete the inquiry experiment
As one moves across a period, from left to right, both the number of protons and electrons of a neutral atom increase. The enhancing number of electrons and protons results in a greater attraction between the electrons and the nucleus. This uplifted attraction pulls the electrons nearer to the nucleus, therefore, reducing the size of the atom.
On the other hand, while moving down a group, there is an increase in the number of energy levels. The enhanced number of energy levels increases the size of the atom in spite of the elevation in the number of protons. In the outermost energy levels, the protons get attracted towards the nucleus, however, the attraction is less due to an increase in the distance from the nucleus.