Electrons are both gained and lost.
The balloon would be smaller and not float as well because of the low temperature. The particles in the balloon when in the car will slow down and get closer together because of the low temperature. That caused it to become more dense and smaller in size then before. When in the store, the particulars in the balloon we’re moving faster and more spread apart
Percent error (%)= 
Accepted value is true value.
Measured values is calculated value.
In the question given Accepted value (true value) = 63.2 cm
Given Measured(calculated values) = 63.1 cm , 63.0 cm , 63.7 cm
1) Percent error (%) for first measurement.
Accepted value (true value) = 63.2 cm, Measured(calculated values) = 63.1 cm
Percent error (%)= 



Percent error = 0.158 %
2) Percent error (%) for second measurement.
Accepted value (true value) = 63.2 cm, Measured(calculated values) = 63.0 cm
Percent error (%)= 



Percent error = 0.316 %
3) Percent error (%) for third measurement.
Accepted value (true value) = 63.2 cm, Measured(calculated values) = 63.7 cm
Percent error (%)= 




Percent error = 0.791 %
Percent error for each measurement is :
63.1 cm = 0.158%
63.0 cm = 0.316%
63.7 cm = 0.791%
Answer:
At the equivalence point, equal amounts of H+ and OH– ions will combine to form H2O, resulting in a pH of 7.0 (neutral). The pH at the equivalence point for this titration will always be 7.0, note that this is true only for titrations of strong acid with strong base.
Explanation:
Answer:
acetic acid, sodium hydroxide
Explanation:
A strong acid is an acid that ionizes in water to give all its hydrogen ion. Weak acid only ionize to a certain degree. Acetic acid (CH3COOH) only ionize to give one hydrogen ion despite having other hydrogen atom. This account for its weak nature as an acid as shown below:
CH3COOH <=> H^+ + CH3COO^-
A strong base is a base that ionizes in water to give all it hydroxide ion. Sodium hydroxide(NaOH) ionizes to give all its hydroxide ions. This make it a strong base as shown below;
NaOH <=> Na^+ + OH^-