Answer:
a) The theoretical yield is 408.45g of 
b) Percent yield = 
Explanation:
1. First determine the numer of moles of
and
.
Molarity is expressed as:
M=
- For the 
M=
Therefore there are 1.75 moles of 
- For the 
M=
}{1Lsolution}[/tex]
Therefore there are 2.0 moles of 
2. Write the balanced chemical equation for the synthesis of the barium white pigment,
:

3. Determine the limiting reagent.
To determine the limiting reagent divide the number of moles by the stoichiometric coefficient of each compound:
- For the
:

- For the
:

As the
is the smalles quantity, this is the limiting reagent.
4. Calculate the mass in grams of the barium white pigment produced from the limiting reagent.

5. The percent yield for your synthesis of the barium white pigment will be calculated using the following equation:
Percent yield = 
Percent yield = 
The real yield is the quantity of barium white pigment you obtained in the laboratory.
Answer:
The pH of the solution is 8.0.
Explanation:
taking the test rn
Metals :-
Group 1A - Alkali metals ( highly reactive metals)
Non-metals :-
Group 17 - Halogens ( highly reactive non-metals )
Answer:
They have fewer hydrogen atoms attached to the carbon chain than alkanes
Explanation:
Let's compare ethane (an alkane) with ethene (an alkene) and ethyne (an alkyne):
- Ethane's formula is C₂H₄, while ethene's is C₂H₄ and ethyne's C₂H₂.
As you can see, alkenes and alkynes have fewer hydrogen atoms attached to the carbon chain due to them having multiple bonds between the carbon atoms.
A mole contains Avogadro’s number of particles of a substance.