Answer: 
concentration of
= 0.50 M
concentration of
= 0.25 M
Explanation:
The dissociation equation of
is:

According to stoichiometry:
1 mole of
gives 2 moles of 
Thus 0.25 moles of
gives =
moles of 
Similarly,
1 mole of
gives = 1 mole of 
Thus 0.25 moles of
gives =
moles of 
Thus the concentration of
and
are 0.50 M and 0.25 M respectively.
First, we will use the general gas formula to get the number of moles.
PV = nRT where:
P is the pressure of gas = 751 mmHg = 100125.096375 Pascal
V is the volume = 1 liter = 0.001 m^3
n is the number of moles we want to calculate
R is the gas constant = <span>8.314 J/(K. </span>mol<span>)
T is the temperature = 31 degrees celcius = </span>304.15 degree kelvin
Substitute in the above equation to get the number of moles as follows:
100125.096375 * 0.001 = n * 8.314 * 304.15
n = 0.039595 moles
Now, we will use the number of moles to get the mass as follows:
number of moles = mass / molar mass
mass = number of moles * molar mass
number of moles = 0.039595 moles
molar mass of ammonia (NH3) = 14 + 3(1) = 17 grams
Substitute to get the mass as follows:
mass = 0.039595 * 17 = 0.673122 grams
Last step is to get the density as follows:
density = mass / volume
mass = 0.673122 grams
volume = 1 liter
density = 0.673122 / 1 = 0.673122 grams/liter = <span>0.000675 kg/L</span>
Answer: The heat needed to be removed to freeze 45.0 g of water at 0.0 °C is 15.01 KJ.
Explanation:
- Firstly, we need to define the term <em>"latent heat"</em> which is the amount of energy required "absorbed or removed" to change the phase "physical state; solid, liquid and vapor" without changing the temperature.
- Types of latent heat: depends on the phases that the change occur between them;
- Liquid → vapor, <em>latent heat of vaporization</em> and energy is absorbed.
- Vapor → liquid, latent heat of liquification and the energy is removed.
- Liquid → solid, <em>latent heat of solidification</em> and the energy is removed.
- Solid → liquid, <em>latent heat of fusion</em> and the energy is absorbed.
- In our problem, we deals with latent heat of freezing "solidification" of water.
- The latent heat of freezing of water, ΔHf, = 333.55 J/g; which means that the energy required to be removed to convert 1.0 g of water from liquid to solid "freezing" is 333.55 g at 0.0 °C.
- Then the amount of energy needed to be removed to freeze 45.0 g of water at 0.0 °C is (ΔHf x no. of grams of water) = (333.55 J/g)(45.0 g) = 15009.75 J = 15.01 KJ.
Answer:
NA (natrium) and CI^2 (chlorine) are the reactants.
Explanation:
Percent yield represents to what extent the reaction runs to completion. In this, the theoretical yield is 50 grams (100% completion).
To calculate percent yield, divide the actual by the theoretical. In doing so, the percent yield is 88% (44/50).