The formula for mole fraction is:
-(1)
The solubility of oxygen gas = 1.0 mmol/L (given)
1.0 mmol/L means 1.0 mmol are present in 1 L.
Converting mmol to mol:

So, moles of oxygen = 0.001 mol
For moles of water:
1 L of water = 1000 mL of water
Since, the density of water is 1.0 g/mL.


So, the mass of water is 1000 g.
Molar mass of water = 18 g/mol.
Number of moles of water = 
Substituting the values in formula (1):


Hence, the mole fraction is
.
Answer: Please find answer in explanation column
Explanation:
During radioactive decay, the __unstable ________ isotope decays into a _stable ___________ isotope that has a different ____proton _______________ number
Or
During radioactive decay, the _ unstable parent nuclide ________ isotope decays into a _stable daughter nuclide ___________ isotope that has a different ____proton _______________ number.
There are 3 types of radioactive decay;alpha, beta and gamma, Of which the above clearly explains the beta decay. In beta decay, the unstable isotope having excess neutrons will undergo a beta decay emitting a beta particle.( ⁰₋₁e) causing the nucleus to loose a neutron but gain a proton.
Some heavy unstable isotopes which undergo radioactive (beta decay ) to become stable isotopes are phosphorus-32, strontium-90, iodine-131
Using Strontium 90 as an example , we have
⁹⁰₃₈St ----->⁹⁰₃₉Y + ⁰₋₁e
Strontium an unstable isotope undergoes a beta radioactive decay to form Yttrium.
Answer:
0.13 M ( 2 s.f)
Explanation:
2Cl2O5 (g)-->2Cl2(g) +5O2 (g)
rate= (17.4 M -1 .s -1 ) [Cl2O5]2
From the rte above, we can tell that our rate constant (k) = 17.4 M -1 .s -1
The units of k tells us this is a second order reaction.
Initial Concentration [A]o = 1.46M
Final Concentration [A] = ?
Time = 0.400s
The integrated rate law for second order reactions is given as;
1 / [A] = (1 / [A]o) + kt
1 / [A] = [ (1/ 1.46) + (17.4 * 0.4) ]
1 / [A] = 0.6849 + 6.96
1 / [A] = 7.6496
[A] = 1 / 7.6496
[A] = 0.13073 M ≈ 0.13 M ( 2 s.f)
NaOH (aq) + HCl(aq) => NaCl(aq)+ H2O(l)
Na+(aq)+ OH - (aq) + H +(aq) +Cl - (aq) + Cl- (aq)
=> Na+(aq) + Cl - (aq) + H2O(l)
H+(aq) + OH-(aq) => H2O(l)