Combustion can be defined as the reaction of a compound with oxygen. The enthalpy of combustion of octane is
for
.
<h3>What is the enthalpy of reaction?</h3>
The enthalpy of reaction is the amount of heat energy absorbed or lost by the molecules in the chemical reaction.
The enthalpy of combustion is the amount of heat energy released by the compound in the reaction with oxygen.
The reaction in which heat is liberated with the reaction of a compound with oxygen has an enthalpy of combustion, equivalent to the enthalpy of reaction.
The combustion of octane can be given as:

Thus, the reaction has combustion energy equivalent to the enthalpy of the reaction is
. Thus, option B is correct.
Learn more about enthalpy of reaction, here:
brainly.com/question/1657608
Answer:
a formula giving the proportions of the elements present in a compound but not the actual numbers or arrangement of atoms.
Explanation:
Answer:
4.52 x 10¹⁴ cycles/s
Explanation:
From c = f·λ => f = c/λ = (3.0 x 10⁸ m/s)/(6.63 x 10⁻⁷m) = 4.52 x 10¹⁴ cycles/s.
f = frequency = ?
λ = wavelength = 6.63 x 10⁻⁷ meter
c = speed of light in vacuum = 3.0 x 10⁸ meters/s
See attachement for the answer to your question.
<span>a. Use PV = nRT and solve for n = number of mols O2.
mols NO = grams/molar mass = ?
Using the coefficients in the balanced equation, convert mols O2 to mols NO2. Do the same for mols NO to mols NO2. It is likely that the two values will not be the same which means one is wrong; the correct value in LR (limiting reagent) problems is ALWAYS the smaller value and the reagent producing that value is the LR.
b.
Using the smaller value for mols NO2 from part a, substitute for n in PV = nRT, use the conditions listed in part b, and solve for V in liters. This will give you the theoretical yield (YY)in liters. The actual yield at these same conditions (AY) is 84.8 L.
</span>and % will be 60%.