Answer:
B. Solvent
Explanation:
In osmosis, water always moves from low solute concentration to high solute concentration. SOLUTE NEVER MOVES AS IT CANNOT PASS THE SELECTIVELY PERMEABLE MEMBRANE. alot of caps but need to stress this concept cuz otherwise this concept gets very confusing
The amount of heat transferred in and out of the system is measured by calorimetry. The thermometer in the calorimeter is used to measure the temperature.
<h3>What are the parts of the calorimetry device?</h3>
The thermometer (A) is a device used to measure the final and the initial temperature of the water or any other liquid in a system. A metal vessel is a place where the reaction mixture is present.
In-vessel (B), water, and metal are placed before the beginning of the experiment. The styrofoam cup or the outer metal vessel (C) insulates the instrument, from regulating the heat transformation.
Therefore, part A measures the temperature of the reaction mixture.
Learn more about insulated containers here:
brainly.com/question/866735
Food code is like sort of a guide to ensure that the food is presented according decent standards, unadulterated and correctly presented to the customer.
It is published every four years by the " U.S Food and Drug Administration".
Answer:
The pressure inside the container will be 3.3 atmospheres
Explanation:
The relationship between the temperature and pressure of a gas occupying a fixed volume is given by Gay-Lussac's law which states that the pressure of a given amount of gas is directly proportional to its temperature on the kelvin scale when the volume is kept constant.
Mathematically, it expressed as: P₁/T₁ = P₂/T₂
where P₁ is initial pressure, T₁ is initial temperature, P₂ is final pressure, T₂ is final temperature.
The above expression shows that the ratio of the pressure and temperature is always constant.
In the given question, the gas in the can attains the temperature of its environment.
P₁ = 3 atm,
T₁ = 25 °C = (273.15 + 25) K = 298.15 K,
P₂ = ?
T₂ = (55 °C = 273.15 + 55) K = 328.15 K
Substituting the values in the equation
3/298.15 = P₂/328.15
P₂ = 3 × 328.15/298.15
P₂ = 3.3 atm
Therefore, the pressure inside the container will be 3.3 atmospheres