Respuesta:
292 g / mol;
Por favor, consulte la explicación.
Explicación:
El número de átomos de cada elemento en el compuesto: Fe2 (co3) 3.
Fe = 2; C = 3; 0 = 3 * 3 = 9
Fe2 = 112 g / mol
C = 12 g / mol
O = 16 g /
Masa molecular = ((112 + (12 * 3) + (16 * 9)
= (112 + 36 + 144)
= 292 g / mol.
Total = 2 + 3 + 9 = 14
Fe2 = 112/292 * 100% = 38,356%
C = 36/292 * 100% = 12,328 * '
O = (16 * 9) / 292 * 100% = 49,32%
<u>larger is the value of </u>
<u> the higher will the solubility of solid in water.</u>
What is called compound?
- In chemistry, a compound is a substance made up of two or more different chemical elements combined in a fixed ratio.
- When the elements come together, they react with each other and form chemical bonds that are difficult to break.
- These bonds form as a result of sharing or exchanging electrons between atoms.
The equation for the dissociation of a solid MX in water is given below
MX(s) ⇄ Mⁿ⁺(aq) + Xⁿ⁻ (aq)
Assume s be the solubility of MX in pure water, then the equilibrium concentrations of ions are
[ Mⁿ⁺] = s
[ Xⁿ⁻ ] = s
The expression for the solubility product constant (
) is as follows
= [ Mⁿ⁺] [ Xⁿ⁻ ]
= s²
That is, larger is the value of
the higher will the solubility of solid in water.
Learn more about compound
brainly.com/question/13516179
#SPJ4
it would be a crystalline solid, because it could be extended in multiple directions.
According to Charles' Law the volume of an ideal gas is directly proportional to its absolute temperature in Kelvin keeping the pressure constant.
V∝ T, P is constant
where V, T and P are volume, temperature and pressure
= 
where V₁, T₁, V₂ and T₂ are initial volume, initial temperature, final volume and final temperature.
Answer:
b- The heat capacity ratio increases but output temperature don’t change
Explanation:
The heat capacity is the amount of energy required to raise the temperature of a body, by 1 degree. On the other hand, the specific heat capacity is the amount of heat required to raise the temperature of a of unit mass of a material by 1 degree.
Heat capacity is an extensive property meaning its value depends on the amount of material. Specific heat capacity is found by dividing heat capacity by the mass of the sample, thus making it independent of the amount (intensive property). So if the specific heat capacity increases and the mass of the sample remains the same, the heat capacity must increase too. Because of that options c and d that say that heat capacity reamins same are INCORRECT.
On the other hand, in which has to be with options a and b both say that the heat capacity increases which is correct, but about the output temperatures what happens is that if we increase the specific heat capacity of both fluids that are involved in a process of heat exchange in the same value, the value of the output temperatures do not change so only option a is CORRECT.