You want to end up with
. Expand this using the angle sum identity for sine:

We want this to line up with
. Right away, we know
.
We also need to have

Recall that
for all
; this means

Then

So we end up with

Answer:
The expected value of the game to the player is -$0.2105 and the expected loss if played the game 1000 times is -$210.5.
Step-by-step explanation:
Consider the provided information.
It is given that if ball lands on 29 players will get $140 otherwise casino will takes $4.
The probability of winning is 1/38. So, the probability of loss is 37/38.
Now, find the expected value of the game to the player as shown:



Hence, the expected value of the game to the player is -$0.2105.
Now find the expect to loss if played the game 1000 times.
1000×(-$0.2105)=-$210.5
Therefore, the expected loss if played the game 1000 times is -$210.5.
Answer: The answer is 1, 2
Step-by-step explanation:
Answer:
95% confidence interval for the proportion of students supporting the fee increase is [0.767, 0.815]. Option C
Step-by-step explanation:
The confidence interval for a proportion is given as [p +/- margin of error (E)]
p is sample proportion = 870/1,100 = 0.791
n is sample size = 1,100
confidence level (C) = 95% = 0.95
significance level = 1 - C = 1 - 0.95 = 0.05 = 5%
critical value (z) at 5% significance level is 1.96.
E = z × sqrt[p(1-p) ÷ n] = 1.96 × sqrt[0.791(1-0.791) ÷ 1,100] = 1.96 × 0.0123 = 0.024
Lower limit of proportion = p - E = 0.791 - 0.024 = 0.767
Upper limit of proportion = p + E = 0.791 + 0.024 = 0.815
95% confidence interval for the proportion of students supporting the fee increase is between a lower limit of 0.767 and an upper limit of 0.815.
Answer:
n = 5.2.
Step-by-step explanation:
-20.8 = -4n
We divide both sides of the equation by -4:
-20.8 / -4 = -4n/-4
5.2 = n (answer).