Q6.
The slope-intercept form: y = mx + b
m - slope
b - y-intercept
We have: slope m = 3, y-intercept (0, 4) → b= 4
<h3>Answer: y = 3x + 4</h3>
Q7.
2x + 4y = 4 |subtract 2x from both sides
4y = -2x + 4 |divide both sides by 4
y = -0.5x + 1
Only second graph has y-intercept = 1.
<h3>Answer: The second graph.</h3>
Q8.
The point-slope form:

We have

Substitute:

<h3>Answer: The first equation.</h3>
Q9.
It's a vertical line. The equation of a vertical line is x = <em>a</em>, where <em>a</em> is any real number.
<h3>Answer: x = -4</h3>
you would change the denominators to the least common multiple, in this case, 12. then you would change the fractions to 8/12, 14/12, and 7/12. you would add those, and get 29/12. divide 29 by 12, and get 2. add the rest to get 2 5/12.
Answers:
===================================================
Explanation:
Part (a)
Lines LN and PN have the point N in common. This is the intersection point.
-----------------
Part (b)
To name a plane, pick any three non-collinear points that are inside it. We cannot pick points H, J, K together because infinitely many planes pass through it. Imagine the piece of flat paper able to rotate around this axis (like a propeller). Having the points not all on the same line guarantees we form exactly one unique plane.
I'll pick the non-collinear points P, H and J to get the name Plane PHJ. Other answers are possible.
------------------
Part (c)
Points H, J and K are collinear as they are on the same line. Pick either H or K to fill out the answer box. I'll go with point K
------------------
Part (d)
Point P and line HK are coplanar. They exist in the same flat plane, or on the same sheet of flat paper together.
We can think of that flat plane as the ground level while something like point N is underground somewhere. So point N and anything on that ground plane wouldn't be coplanar.
Note: there are other possible names for line HK such as line JH or line JK. The order doesn't matter when it comes to naming lines.
This argument is no valid although the first part of the statement is valid. If a number is larger than 6 than its square must be larger than 36. But if the number is smaller than 6, its square does not need to be smaller than 36. For example...
(-100)²=10000
-100 is smaller than 6 but its square is bigger.
answer: False