This problem is providing us with the chemical equation depicting the production of ammonia from nitrogen and hydrogen at equilibrium and asks for the correct change when the concentration of nitrogen is increased. At the end, the answer is the forward reaction would increase to start reducing the concentration of N2.
<h3>Chemical equilibrium</h3>
In chemistry, chemical reactions not always reach a 100-% conversion when reactants get in contact in order to carry out the chemical reaction. Thus, there is a point wherein the concentrations remain the same and is called equilibrium.
In such a way, for this problem, we have the following chemical reaction at equilibrium:

Now, according to the Le Ch.atelier's principle, an increase in the concentration of any species, shifts the equilibrium away from it, which means that if we increase the concentration of nitrogen, a reactant, the forward reaction will be favored.
Thereby, the correct answer is "the forward reaction would increase to start reducing the concentration of N2".
Learn more about chemical equilibrium: brainly.com/question/26453983
<span>the polarity of the solute or the solvent.
for example:
oil will not mix with water because oil molecules are nonpolar however water moleculses are polar. so, they will not mix with each other.
when we put sodium chloride in water, sodium chloride will be easily dissoved. because both sodium chloride and water are polar.
in other case, if we put sodium chloride and hexane together. sodium chloride will not dissove in hexane, because hexane is a nonpolar solvent.
finally, if we try to mix hexane and bromine together, they will mix uniformly. because both hexane and bromine are nonpolar. (note: most diatomic molecules are nonpolar, such as hydrogen gas, oxygen gas, chlorine gas, etc. )
so just remember, nonpolar and nonpolar will dissovle each other. and polar and polar will dissolve each other.</span>
D is the answer I believe.