Answer:
The answer to your question is molality = 0.61
Explanation:
Freezing point is the temperature at which a liquid turns into a solid if a solute is added to a solution, the freezing point changes.
Data
Kf = 1.86 °C/m
molality = ?
ΔTc = 1.13°C
Formula
ΔTc = kcm
Solve for m
m = ΔTc/kc
Substitution
m = 1.13 / 1.86
Simplification and result
m = 0.61
Answer:
0.583 kilojoules
Explanation:
The amount of heat required to pop a single kernel can be calculated using the formula as follows:
Q = m × c × ∆T
Where;
Q = amount of heat (J)
m = mass of water (g)
c = specific heat capacity of water (4.184 J/g°C)
∆T = change in temperature
From the given information, m = 0.905 g, initial temperature (room temperature) = 21°C , final temperature = 175°C, Q = ?
Q = m × c × ∆T
Q = 0.905 × 4.184 × (175°C - 21°C)
Q = 3.786 × 154
Q = 583.044 Joules
In kilojoules i.e. we divide by 1000, the amount of heat is:
= 583.04/1000
= 0.583 kilojoules
Answer:
19.8 kg of C₂H₂ is needed
Explanation:
We solve this by a rule of three:
If 1251 kJ of heat are relased in the combustion of 1 mol of acetylene
95.5×10⁴ kJ of heat may be released by the combustion of
(95.5×10⁴ kJ . 1) /1251kJ = 763.4 moles of C₂H₂
Let's convert the moles to mass → 763.4 mol . 26 g/1 mol = 19848 g
If we convert the mass from g to kg → 19848 g . 1kg / 1000g = 19.8 kg
A) Ca(OH)2 + CO2 —> CaCO3 + H2O
B) when Ca(OH)2 is reacted with CO2, the CaCO3 produced is a precipitate which turns the solution milky
False. A mixture represents elements or molecules which are not chemically combined.